1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
use crate::{CoordDimensions, CoordSeq, Geometry as GGeometry};
use error::Error;
use geo_types::{Coordinate, LineString, MultiPolygon, Point, Polygon};

use std;
use std::borrow::Borrow;
use std::convert::{TryFrom, TryInto};

fn create_coord_seq_from_vec<'a, 'b>(coords: &'a [Coordinate<f64>]) -> Result<CoordSeq<'b>, Error> {
    create_coord_seq(coords.iter(), coords.len())
}

fn create_coord_seq<'a, 'b, It>(points: It, len: usize) -> Result<CoordSeq<'b>, Error>
where
    It: Iterator<Item = &'a Coordinate<f64>>,
{
    let mut coord_seq =
        CoordSeq::new(len as u32, CoordDimensions::TwoD).expect("failed to create CoordSeq");
    for (i, p) in points.enumerate() {
        coord_seq.set_x(i, p.x)?;
        coord_seq.set_y(i, p.y)?;
    }
    Ok(coord_seq)
}

impl<'a, 'b> TryFrom<&'a Point<f64>> for GGeometry<'b> {
    type Error = Error;

    fn try_from(other: &'a Point<f64>) -> Result<GGeometry<'b>, Self::Error> {
        let coord_seq = create_coord_seq(std::iter::once(&other.0), 1)?;

        GGeometry::create_point(coord_seq)
    }
}

impl<'a> TryFrom<Point<f64>> for GGeometry<'a> {
    type Error = Error;

    fn try_from(other: Point<f64>) -> Result<GGeometry<'a>, Self::Error> {
        GGeometry::try_from(&other)
    }
}

impl<'a, T: Borrow<Point<f64>>> TryFrom<&'a [T]> for GGeometry<'a> {
    type Error = Error;

    fn try_from(other: &'a [T]) -> Result<GGeometry<'a>, Self::Error> {
        let geom_points = other
            .into_iter()
            .map(|p| p.borrow().try_into())
            .collect::<Result<Vec<_>, _>>()?;

        GGeometry::create_multipoint(geom_points)
    }
}

impl<'a, 'b> TryFrom<&'a LineString<f64>> for GGeometry<'b> {
    type Error = Error;

    fn try_from(other: &'a LineString<f64>) -> Result<GGeometry<'b>, Self::Error> {
        let coord_seq = create_coord_seq_from_vec(other.0.as_slice())?;

        GGeometry::create_line_string(coord_seq)
    }
}

impl<'a> TryFrom<LineString<f64>> for GGeometry<'a> {
    type Error = Error;

    fn try_from(other: LineString<f64>) -> Result<GGeometry<'a>, Self::Error> {
        GGeometry::try_from(&other)
    }
}

// rust geo does not have the distinction LineString/LineRing, so we create a wrapper

struct LineRing<'a>(&'a LineString<f64>);

/// Convert a geo_types::LineString to a geos LinearRing
/// a LinearRing should be closed so cloase the geometry if needed
impl<'a, 'b> TryFrom<LineRing<'a>> for GGeometry<'b> {
    type Error = Error;

    fn try_from(other: LineRing<'a>) -> Result<GGeometry<'b>, Self::Error> {
        let points = &(other.0).0;
        let nb_points = points.len();
        if nb_points > 0 && nb_points < 3 {
            return Err(Error::InvalidGeometry(
                "impossible to create a LinearRing, A LinearRing must have at least 3 coordinates"
                    .into(),
            ));
        }

        // if the geom is not closed we close it
        let is_closed = nb_points > 0 && points.first() == points.last();
        // Note: we also need to close a 2 points closed linearring, cf test closed_2_points_linear_ring
        let need_closing = nb_points > 0 && (!is_closed || nb_points == 3);
        let coord_seq = if need_closing {
            create_coord_seq(
                points.iter().chain(std::iter::once(&points[0])),
                nb_points + 1,
            )?
        } else {
            create_coord_seq(points.iter(), nb_points)?
        };
        GGeometry::create_linear_ring(coord_seq)
    }
}

impl<'a, 'b> TryFrom<&'a Polygon<f64>> for GGeometry<'b> {
    type Error = Error;

    fn try_from(other: &'a Polygon<f64>) -> Result<GGeometry<'b>, Self::Error> {
        let ring = LineRing(other.exterior());
        let geom_exterior: GGeometry = ring.try_into()?;

        let interiors: Vec<_> = other
            .interiors()
            .iter()
            .map(|i| LineRing(i).try_into())
            .collect::<Result<Vec<_>, _>>()?;

        GGeometry::create_polygon(geom_exterior, interiors)
    }
}

impl<'a> TryFrom<Polygon<f64>> for GGeometry<'a> {
    type Error = Error;

    fn try_from(other: Polygon<f64>) -> Result<GGeometry<'a>, Self::Error> {
        GGeometry::try_from(&other)
    }
}

impl<'a, 'b> TryFrom<&'a MultiPolygon<f64>> for GGeometry<'b> {
    type Error = Error;

    fn try_from(other: &'a MultiPolygon<f64>) -> Result<GGeometry<'b>, Self::Error> {
        let polygons: Vec<_> = other
            .0
            .iter()
            .map(|p| p.try_into())
            .collect::<Result<Vec<_>, _>>()?;

        GGeometry::create_multipolygon(polygons)
    }
}

impl<'a> TryFrom<MultiPolygon<f64>> for GGeometry<'a> {
    type Error = Error;

    fn try_from(other: MultiPolygon<f64>) -> Result<GGeometry<'a>, Self::Error> {
        GGeometry::try_from(&other)
    }
}

#[cfg(test)]
mod test {
    use super::LineRing;
    use crate::{Geom, Geometry as GGeometry};
    use geo_types::{Coordinate, LineString, MultiPolygon, Polygon};
    use std::convert::TryInto;

    fn coords(tuples: Vec<(f64, f64)>) -> Vec<Coordinate<f64>> {
        tuples.into_iter().map(Coordinate::from).collect()
    }

    #[test]
    fn polygon_contains_test() {
        let exterior = LineString(coords(vec![
            (0., 0.),
            (0., 1.),
            (1., 1.),
            (1., 0.),
            (0., 0.),
        ]));
        let interiors = vec![LineString(coords(vec![
            (0.1, 0.1),
            (0.1, 0.9),
            (0.9, 0.9),
            (0.9, 0.1),
            (0.1, 0.1),
        ]))];
        let p = Polygon::new(exterior.clone(), interiors.clone());

        assert_eq!(p.exterior(), &exterior);
        assert_eq!(p.interiors(), interiors.as_slice());

        let geom: GGeometry = p.try_into().unwrap();

        assert!(geom.contains(&geom).unwrap());

        let tmp: GGeometry = exterior.try_into().unwrap();

        assert!(!geom.contains(&tmp).unwrap());
        assert!(geom.covers(&tmp).unwrap());
        assert!(geom.touches(&tmp).unwrap());
    }

    #[test]
    fn multipolygon_contains_test() {
        let exterior = LineString(coords(vec![
            (0., 0.),
            (0., 1.),
            (1., 1.),
            (1., 0.),
            (0., 0.),
        ]));
        let interiors = vec![LineString(coords(vec![
            (0.1, 0.1),
            (0.1, 0.9),
            (0.9, 0.9),
            (0.9, 0.1),
            (0.1, 0.1),
        ]))];
        let p = Polygon::new(exterior, interiors);
        let mp = MultiPolygon(vec![p.clone()]);

        let geom: GGeometry = (&mp).try_into().unwrap();

        assert!(geom.contains(&geom).unwrap());
        assert!(geom
            .contains::<GGeometry>(&(&p).try_into().unwrap())
            .unwrap());
    }

    #[test]
    fn incorrect_multipolygon_test() {
        let exterior = LineString(coords(vec![(0., 0.)]));
        let interiors = vec![];
        let p = Polygon::new(exterior, interiors);
        let mp = MultiPolygon(vec![p.clone()]);

        let geom: Result<GGeometry, _> = mp.try_into();

        assert!(geom.is_err());
    }

    #[test]
    fn incorrect_polygon_not_closed() {
        // even if the polygon is not closed we can convert it to geos (we close it)
        let exterior = LineString(coords(vec![
            (0., 0.),
            (0., 2.),
            (2., 2.),
            (2., 0.),
            (0., 0.),
        ]));
        let interiors = vec![LineString(coords(vec![
            (0., 0.),
            (0., 1.),
            (1., 1.),
            (1., 0.),
            (0., 10.),
        ]))];
        let p = Polygon::new(exterior, interiors);
        let mp = MultiPolygon(vec![p]);

        let _g: GGeometry = mp.try_into().unwrap(); // no error
    }

    /// a linear ring can be empty
    #[test]
    fn empty_linear_ring() {
        let ls = LineString(vec![]);
        let geom: GGeometry = LineRing(&ls).try_into().unwrap();

        assert!(geom.is_valid());
        assert!(geom.is_ring().unwrap());
        assert_eq!(geom.get_coord_seq().unwrap().size().unwrap(), 0);
    }

    /// a linear ring should have at least 3 elements
    #[test]
    fn one_elt_linear_ring() {
        let ls = LineString(coords(vec![(0., 0.)]));
        let geom: Result<GGeometry, _> = LineRing(&ls).try_into();
        let error = geom.err().unwrap();
        assert_eq!(format!("{}", error), "Invalid geometry, impossible to create a LinearRing, A LinearRing must have at least 3 coordinates".to_string());
    }

    /// a linear ring should have at least 3 elements
    #[test]
    fn two_elt_linear_ring() {
        let ls = LineString(coords(vec![(0., 0.), (0., 1.)]));
        let geom: Result<GGeometry, _> = LineRing(&ls).try_into();
        let error = geom.err().unwrap();
        assert_eq!(format!("{}", error), "Invalid geometry, impossible to create a LinearRing, A LinearRing must have at least 3 coordinates".to_string());
    }

    /// an unclosed linearring is valid since we close it before giving it to geos
    #[test]
    fn unclosed_linear_ring() {
        let ls = LineString(coords(vec![(0., 0.), (0., 1.), (1., 2.)]));
        let geom: GGeometry = LineRing(&ls).try_into().unwrap();

        assert!(geom.is_valid());
        assert!(geom.is_ring().unwrap());
        assert_eq!(geom.get_coord_seq().unwrap().size().unwrap(), 4);
    }

    /// a bit tricky
    /// a ring should have at least 3 points.
    /// in the case of a closed ring with only element eg:
    ///
    /// let's take a point list: [p1, p2, p1]
    ///
    /// p1 ----- p2
    ///  ^-------|
    ///
    /// we consider it like a 3 points not closed ring (with the 2 last elements being equals...)
    ///
    /// shapely (the python geos wrapper) considers that too
    #[test]
    fn closed_2_points_linear_ring() {
        let ls = LineString(coords(vec![(0., 0.), (0., 1.), (1., 1.)]));
        let geom: GGeometry = LineRing(&ls).try_into().unwrap();

        assert!(geom.is_valid());
        assert!(geom.is_ring().expect("is_ring failed"));
        assert_eq!(geom.get_coord_seq().unwrap().size().unwrap(), 4);
    }

    /// a linear ring can be empty
    #[test]
    fn good_linear_ring() {
        let ls = LineString(coords(vec![(0., 0.), (0., 1.), (1., 2.), (0., 0.)]));
        let geom: GGeometry = LineRing(&ls).try_into().unwrap();

        assert!(geom.is_valid());
        assert!(geom.is_ring().unwrap());
        assert_eq!(geom.get_coord_seq().unwrap().size().unwrap(), 4);
    }
}