logo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
#![warn(missing_debug_implementations)]
#![doc(html_logo_url = "https://raw.githubusercontent.com/georust/meta/master/logo/logo.png")]
//! The `geo-types` library defines geometric types for the [GeoRust] ecosystem.
//!
//! In most cases, you will only need to use this crate if you’re a crate author and want
//! compatibility with other GeoRust crates. Otherwise, the [`geo`](https://crates.io/crates/geo)
//! crate re-exports these types and additionally provides geospatial algorithms.
//!
//! ## Geometries
//!
//! - **[`Point`]**: A single point represented by one [`Coordinate`]
//! - **[`MultiPoint`]**: A collection of [`Point`]s
//! - **[`Line`]**: A line segment represented by two [`Coordinate`]s
//! - **[`LineString`]**: A series of contiguous line segments represented by two or more
//!   [`Coordinate`]s
//! - **[`MultiLineString`]**: A collection of [`LineString`]s
//! - **[`Polygon`]**: A bounded area represented by one [`LineString`] exterior ring, and zero or
//!   more [`LineString`] interior rings
//! - **[`MultiPolygon`]**: A collection of [`Polygon`]s
//! - **[`Rect`]**: An axis-aligned bounded rectangle represented by minimum and maximum
//!   [`Coordinate`]s
//! - **[`Triangle`]**: A bounded area represented by three [`Coordinate`] vertices
//! - **[`GeometryCollection`]**: A collection of [`Geometry`]s
//! - **[`Geometry`]**: An enumeration of all geometry types, excluding [`Coordinate`]
//!
//! ## Coordinates and Numeric Types
//!
//! - **[`Coordinate`]**: A two-dimensional coordinate. All geometry types are composed of [`Coordinate`]s, though [`Coordinate`] itself is not a [`Geometry`] type. See [`Point`] for a single coordinate geometry.
//!
//! By default, coordinates are 64-bit floating point numbers, but this is generic, and you may specify any numeric type that implements [`CoordNum`] or [`CoordFloat`]. As well as [`f64`], this includes common numeric types like [`f32`], [`i32`], [`i64`], etc.
//!
//! ```rust
//! use geo_types::Point;
//!
//! // Geometries are f64 by default
//! let point: Point = Point::new(1.0, 2.0);
//! assert_eq!(std::mem::size_of::<Point>(), 64 * 2 / 8);
//!
//! // You can be explicit about the numeric type.
//! let f64_point: Point<f64> = Point::new(1.0, 2.0);
//! assert_eq!(std::mem::size_of::<Point<f64>>(), 64 * 2 / 8);
//!
//! // Or specify some non-default numeric type
//! let f32_point: Point<f32> = Point::new(1.0, 2.0);
//! assert_eq!(std::mem::size_of::<Point<f32>>(), 32 * 2 / 8);
//!
//! // Integer geometries are supported too, though not all
//! // algorithms will be implemented for all numeric types.
//! let i32_point: Point<i32> = Point::new(1, 2);
//! assert_eq!(std::mem::size_of::<Point<i32>>(), 32 * 2 / 8);
//! ```
//!
//! # Semantics
//!
//! The geospatial types provided here aim to adhere to the [OpenGIS Simple feature access][OGC-SFA]
//! standards. Thus, the types here are inter-operable with other implementations of the standards:
//! [JTS], [GEOS], etc.
//!
//! # Features
//!
//! The following optional [Cargo features] are available:
//!
//! - `approx`: Allows geometry types to be checked for approximate equality with [approx]
//! - `arbitrary`: Allows geometry types to be created from unstructured input with [arbitrary]
//! - `serde`: Allows geometry types to be serialized and deserialized with [Serde]
//! - `use-rstar_0_8`: Allows geometry types to be inserted into [rstar] R*-trees (`rstar v0.8`)
//! - `use-rstar_0_9`: Allows geometry types to be inserted into [rstar] R*-trees (`rstar v0.9`)
//!
//! [approx]: https://github.com/brendanzab/approx
//! [arbitrary]: https://github.com/rust-fuzz/arbitrary
//! [Cargo features]: https://doc.rust-lang.org/cargo/reference/features.html
//! [GeoRust]: https://georust.org
//! [GEOS]: https://trac.osgeo.org/geos
//! [JTS]: https://github.com/locationtech/jts
//! [OGC-SFA]: https://www.ogc.org/standards/sfa
//! [rstar]: https://github.com/Stoeoef/rstar
//! [Serde]: https://serde.rs/
extern crate num_traits;
use num_traits::{Float, Num, NumCast};
use std::fmt::Debug;

#[cfg(feature = "serde")]
#[macro_use]
extern crate serde;

#[cfg(feature = "rstar_0_8")]
extern crate rstar_0_8;

#[cfg(test)]
#[macro_use]
extern crate approx;

#[deprecated(since = "0.7.0", note = "use `CoordFloat` or `CoordNum` instead")]
pub trait CoordinateType: Num + Copy + NumCast + PartialOrd + Debug {}
#[allow(deprecated)]
impl<T: Num + Copy + NumCast + PartialOrd + Debug> CoordinateType for T {}

/// For algorithms which can use both integer **and** floating point `Point`s/`Coordinate`s
///
/// Floats (`f32` and `f64`) and Integers (`u8`, `i32` etc.) implement this.
///
/// For algorithms which only make sense for floating point, like area or length calculations,
/// see [CoordFloat](trait.CoordFloat.html).
#[allow(deprecated)]
pub trait CoordNum: CoordinateType + Debug {}
#[allow(deprecated)]
impl<T: CoordinateType + Debug> CoordNum for T {}

/// For algorithms which can only use floating point `Point`s/`Coordinate`s, like area or length calculations
pub trait CoordFloat: CoordNum + Float {}
impl<T: CoordNum + Float> CoordFloat for T {}

pub mod geometry;
pub use geometry::*;

pub use geometry::line_string::PointsIter;

#[allow(deprecated)]
pub use geometry::rect::InvalidRectCoordinatesError;

mod error;
pub use error::Error;

#[macro_use]
mod macros;

#[cfg(feature = "arbitrary")]
mod arbitrary;

#[cfg(any(feature = "rstar_0_8", feature = "rstar_0_9"))]
#[doc(hidden)]
pub mod private_utils;

#[cfg(test)]
mod tests {
    use super::*;
    use std::convert::TryFrom;

    #[test]
    fn type_test() {
        let c = coord! {
            x: 40.02f64,
            y: 116.34,
        };

        let p = Point::from(c);

        let Point(c2) = p;
        assert_eq!(c, c2);
        assert_relative_eq!(c.x, c2.x);
        assert_relative_eq!(c.y, c2.y);

        let p: Point<f32> = (0f32, 1f32).into();
        assert_relative_eq!(p.x(), 0.);
        assert_relative_eq!(p.y(), 1.);
    }

    #[test]
    fn convert_types() {
        let p: Point<f32> = Point::new(0., 0.);
        let p1 = p;
        let g: Geometry<f32> = p.into();
        let p2 = Point::try_from(g).unwrap();
        assert_eq!(p1, p2);
    }

    #[test]
    fn polygon_new_test() {
        let exterior = LineString::new(vec![
            coord! { x: 0., y: 0. },
            coord! { x: 1., y: 1. },
            coord! { x: 1., y: 0. },
            coord! { x: 0., y: 0. },
        ]);
        let interiors = vec![LineString::new(vec![
            coord! { x: 0.1, y: 0.1 },
            coord! { x: 0.9, y: 0.9 },
            coord! { x: 0.9, y: 0.1 },
            coord! { x: 0.1, y: 0.1 },
        ])];
        let p = Polygon::new(exterior.clone(), interiors.clone());

        assert_eq!(p.exterior(), &exterior);
        assert_eq!(p.interiors(), &interiors[..]);
    }

    #[test]
    fn iters() {
        let _: MultiPoint<_> = vec![(0., 0.), (1., 2.)].into();
        let _: MultiPoint<_> = vec![(0., 0.), (1., 2.)].into_iter().collect();

        let mut l1: LineString<_> = vec![(0., 0.), (1., 2.)].into();
        assert_eq!(l1[1], coord! { x: 1., y: 2. }); // index into linestring
        let _: LineString<_> = vec![(0., 0.), (1., 2.)].into_iter().collect();

        // index mutably into a linestring
        l1[0] = coord! { x: 1., y: 1. };
        assert_eq!(l1, vec![(1., 1.), (1., 2.)].into());
    }

    #[test]
    fn test_coordinate_types() {
        let p: Point<u8> = Point::new(0, 0);
        assert_eq!(p.x(), 0u8);

        let p: Point<i64> = Point::new(1_000_000, 0);
        assert_eq!(p.x(), 1_000_000i64);
    }

    #[cfg(feature = "rstar_0_8")]
    #[test]
    /// ensure Line's SpatialObject impl is correct
    fn line_test() {
        use rstar_0_8::primitives::Line as RStarLine;
        use rstar_0_8::{PointDistance, RTreeObject};

        let rl = RStarLine::new(Point::new(0.0, 0.0), Point::new(5.0, 5.0));
        let l = Line::new(coord! { x: 0.0, y: 0.0 }, coord! { x: 5., y: 5. });
        assert_eq!(rl.envelope(), l.envelope());
        // difference in 15th decimal place
        assert_relative_eq!(26.0, rl.distance_2(&Point::new(4.0, 10.0)));
        assert_relative_eq!(25.999999999999996, l.distance_2(&Point::new(4.0, 10.0)));
    }

    #[cfg(feature = "rstar_0_9")]
    #[test]
    /// ensure Line's SpatialObject impl is correct
    fn line_test_0_9() {
        use rstar_0_9::primitives::Line as RStarLine;
        use rstar_0_9::{PointDistance, RTreeObject};

        let rl = RStarLine::new(Point::new(0.0, 0.0), Point::new(5.0, 5.0));
        let l = Line::new(coord! { x: 0.0, y: 0.0 }, coord! { x: 5., y: 5. });
        assert_eq!(rl.envelope(), l.envelope());
        // difference in 15th decimal place
        assert_relative_eq!(26.0, rl.distance_2(&Point::new(4.0, 10.0)));
        assert_relative_eq!(25.999999999999996, l.distance_2(&Point::new(4.0, 10.0)));
    }

    #[test]
    fn test_rects() {
        let r = Rect::new(coord! { x: -1., y: -1. }, coord! { x: 1., y: 1. });
        let p: Polygon<_> = r.into();
        assert_eq!(
            p,
            Polygon::new(
                vec![(-1., -1.), (1., -1.), (1., 1.), (-1., 1.), (-1., -1.)].into(),
                vec![]
            )
        );
    }
}