1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
//! This crate implements a structure that can be used as a generic array type.use
//! Core Rust array types `[T; N]` can't be used generically with respect to `N`, so for example this:
//!
//! ```{should_fail}
//! struct Foo<T, N> {
//!     data: [T; N]
//! }
//! ```
//!
//! won't work.
//!
//! **generic-array** exports a `GenericArray<T,N>` type, which lets the above be implemented as:
//!
//! ```
//! # use generic_array::{ArrayLength, GenericArray};
//! struct Foo<T, N: ArrayLength<T>> {
//!     data: GenericArray<T,N>
//! }
//! ```
//!
//! The `ArrayLength<T>` trait is implemented by default for [unsigned integer types](../typenum/uint/index.html) from [typenum](../typenum/index.html).
//!
//! For ease of use, an `arr!` macro is provided - example below:
//!
//! ```
//! # #[macro_use]
//! # extern crate generic_array;
//! # extern crate typenum;
//! # fn main() {
//! let array = arr![u32; 1, 2, 3];
//! assert_eq!(array[2], 3);
//! # }
//! ```
#![no_std]
pub extern crate typenum;
extern crate nodrop;
#[cfg(feature="serde")]
extern crate serde;
pub mod arr;
pub mod iter;
pub use iter::GenericArrayIter;
mod hex;

#[cfg(feature="serde")]
pub mod impl_serde;

use nodrop::NoDrop;
use typenum::uint::{Unsigned, UTerm, UInt};
use typenum::bit::{B0, B1};
use core::fmt::Debug;
use core::marker::PhantomData;
use core::mem;
use core::ops::{Deref, DerefMut};
use core::ptr;
use core::slice;

/// Trait making `GenericArray` work, marking types to be used as length of an array
pub unsafe trait ArrayLength<T>: Unsigned {
    /// Associated type representing the array type for the number
    type ArrayType;
}

unsafe impl<T> ArrayLength<T> for UTerm {
    type ArrayType = ();
}

/// Internal type used to generate a struct of appropriate size
#[allow(dead_code)]
#[repr(C)]
pub struct GenericArrayImplEven<T, U> {
    parent1: U,
    parent2: U,
    _marker: PhantomData<T>,
}

impl<T: Clone, U: Clone> Clone for GenericArrayImplEven<T, U> {
    fn clone(&self) -> GenericArrayImplEven<T, U> {
        GenericArrayImplEven {
            parent1: self.parent1.clone(),
            parent2: self.parent2.clone(),
            _marker: PhantomData,
        }
    }
}

impl<T: Copy, U: Copy> Copy for GenericArrayImplEven<T, U> {}

/// Internal type used to generate a struct of appropriate size
#[allow(dead_code)]
#[repr(C)]
pub struct GenericArrayImplOdd<T, U> {
    parent1: U,
    parent2: U,
    data: T,
}

impl<T: Clone, U: Clone> Clone for GenericArrayImplOdd<T, U> {
    fn clone(&self) -> GenericArrayImplOdd<T, U> {
        GenericArrayImplOdd {
            parent1: self.parent1.clone(),
            parent2: self.parent2.clone(),
            data: self.data.clone(),
        }
    }
}

impl<T: Copy, U: Copy> Copy for GenericArrayImplOdd<T, U> {}

unsafe impl<T, N: ArrayLength<T>> ArrayLength<T> for UInt<N, B0> {
    type ArrayType = GenericArrayImplEven<T, N::ArrayType>;
}

unsafe impl<T, N: ArrayLength<T>> ArrayLength<T> for UInt<N, B1> {
    type ArrayType = GenericArrayImplOdd<T, N::ArrayType>;
}

/// Struct representing a generic array - `GenericArray<T, N>` works like [T; N]
#[allow(dead_code)]
pub struct GenericArray<T, U: ArrayLength<T>> {
    data: U::ArrayType,
}

impl<T, N> Deref for GenericArray<T, N>
    where N: ArrayLength<T>
{
    type Target = [T];

    fn deref(&self) -> &[T] {
        unsafe { slice::from_raw_parts(self as *const Self as *const T, N::to_usize()) }
    }
}

impl<T, N> DerefMut for GenericArray<T, N>
    where N: ArrayLength<T>
{
    fn deref_mut(&mut self) -> &mut [T] {
        unsafe { slice::from_raw_parts_mut(self as *mut Self as *mut T, N::to_usize()) }
    }
}

impl<T, N> GenericArray<T, N>
    where N: ArrayLength<T>
{
    /// map a function over a  slice to a `GenericArray`.
    /// The length of the slice *must* be equal to the length of the array
    pub fn map_slice<S, F: Fn(&S) -> T>(s: &[S], f: F) -> GenericArray<T, N> {
        assert_eq!(s.len(), N::to_usize());
        map_inner(s, f)
    }

    /// map a function over a `GenericArray`.
    pub fn map<U, F>(self, f: F) -> GenericArray<U, N>
        where F: Fn(&T) -> U,
              N: ArrayLength<U>
    {
        map_inner(&self, f)
    }

    /// Extracts a slice containing the entire array
    pub fn as_slice(&self) -> &[T] {
        self.deref()
    }

    /// Extracts a mutable slice containing the entire array
    pub fn as_mut_slice(&mut self) -> &mut [T] {
        self.deref_mut()
    }
}

#[inline]
fn map_inner<S, F, T, N>(list: &[S], f: F) -> GenericArray<T, N>
    where F: Fn(&S) -> T,
          N: ArrayLength<T>
{
    unsafe {
        let mut res: NoDrop<GenericArray<T, N>> = NoDrop::new(mem::uninitialized());
        for (s, r) in list.iter().zip(res.iter_mut()) {
            core::ptr::write(r, f(s))
        }
        res.into_inner()
    }
}

impl<T: Default, N> Default for GenericArray<T, N>
    where N: ArrayLength<T>
{
    fn default() -> Self {
        unsafe {
            let mut res: NoDrop<GenericArray<T, N>> = NoDrop::new(mem::uninitialized());
            for r in res.iter_mut() {
                ptr::write(r, T::default())
            }
            res.into_inner()
        }
    }
}

impl<T: Clone, N> GenericArray<T, N>
    where N: ArrayLength<T>
{
    /// Function constructing an array from a slice by clonning its content
    ///
    /// Length of the slice must be equal to the length of the array
    pub fn clone_from_slice(list: &[T]) -> GenericArray<T, N> {
        assert_eq!(list.len(), N::to_usize());
        map_inner(list, |x: &T| x.clone())
    }

    /// Converts slice to a generic array reference with inferred length;
    ///
    /// Length of the slice must be equal to the length of the array
    #[inline]
    pub fn from_slice(slice: &[T]) -> &GenericArray<T, N> {
        assert_eq!(slice.len(), N::to_usize());
        unsafe { &*(slice.as_ptr() as *const GenericArray<T, N>) }
    }

    /// Converts mutable slice to a mutable generic array reference
    ///
    /// Length of the slice must be equal to the length of the array
    #[inline]
    pub fn from_mut_slice(slice: &mut [T]) -> &mut GenericArray<T, N> {
        assert_eq!(slice.len(), N::to_usize());
        unsafe { &mut *(slice.as_mut_ptr() as *mut GenericArray<T, N>) }
    }
}

impl<T: Clone, N> Clone for GenericArray<T, N>
    where N: ArrayLength<T>
{
    fn clone(&self) -> GenericArray<T, N> {
        unsafe {
            let mut res: NoDrop<GenericArray<T, N>> = NoDrop::new(mem::uninitialized());
            for i in 0..N::to_usize() {
                ptr::write(&mut res[i], self[i].clone())
            }
            res.into_inner()
        }
    }
}
impl<T: Copy, N> Copy for GenericArray<T, N>
    where N: ArrayLength<T>,
          N::ArrayType: Copy
{
}

impl<T: PartialEq, N> PartialEq for GenericArray<T, N>
    where N: ArrayLength<T>
{
    fn eq(&self, other: &Self) -> bool {
        **self == **other
    }
}
impl<T: Eq, N> Eq for GenericArray<T, N> where N: ArrayLength<T> {}

impl<T: Debug, N> Debug for GenericArray<T, N>
    where N: ArrayLength<T>
{
    fn fmt(&self, fmt: &mut core::fmt::Formatter) -> core::fmt::Result {
        self[..].fmt(fmt)
    }
}