1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
//! Maybe unaligned pool array access

use std::mem;
use std::ops::{Deref, DerefMut};
use std::ptr;
use std::slice;

#[derive(Clone, Eq, PartialEq, Ord, PartialOrd, Debug)]
/// An pool array access that may be unaligned.
pub struct MaybeUnaligned<G> {
    guard: G,
}

#[derive(Clone, Eq, PartialEq, Ord, PartialOrd, Debug)]
/// An pool array access that is (assumed to be) aligned.
pub struct Aligned<G> {
    guard: G,
}

#[derive(Debug)]
/// An pool array write access with an owned aligned copy. The data is written back when this is
/// dropped.
pub struct Owned<G>
where
    G: Guard + WritePtr,
    G::Target: Copy,
{
    guard: G,
    owned: Vec<G::Target>,
}

/// Trait for array access guards
#[doc(hidden)]
pub unsafe trait Guard: Drop {
    type Target;
    fn len(&self) -> usize;
    fn read_ptr(&self) -> *const Self::Target;
}

/// Marker trait for write access guards
#[doc(hidden)]
pub unsafe trait WritePtr: Guard {}

impl<G: Guard> MaybeUnaligned<G> {
    pub(crate) fn new(guard: G) -> Self {
        MaybeUnaligned { guard }
    }

    /// Assumes that an access is aligned. It is undefined behavior to Deref the resulting
    /// access if the underlying pointer is not aligned to `G::Target`.
    pub unsafe fn assume_aligned(self) -> Aligned<G> {
        Aligned { guard: self.guard }
    }

    /// Tries to convert to an aligned access. Returns `None` if the underlying pointer is not
    /// aligned.
    pub fn try_into_aligned(self) -> Option<Aligned<G>> {
        if self.guard.read_ptr() as usize % mem::align_of::<G::Target>() == 0 {
            unsafe { Some(self.assume_aligned()) }
        } else {
            None
        }
    }

    /// Copies the data out of this access into a `Vec`.
    pub fn to_vec(&self) -> Vec<G::Target>
    where
        G::Target: Copy,
    {
        let len = self.guard.len();
        let mut vec = Vec::with_capacity(len);
        unsafe {
            let mut src = self.guard.read_ptr();
            for _ in 0..len {
                vec.push(ptr::read_unaligned(src));
                src = src.add(1);
            }
        }
        assert_eq!(len, vec.len());
        vec
    }

    /// Converts to an access backed by an owned, aligned copy of the data. The data is written
    /// back when the access is dropped.
    pub fn into_owned(self) -> Owned<G>
    where
        G: WritePtr,
        G::Target: Copy,
    {
        let vec = self.to_vec();
        Owned {
            guard: self.guard,
            owned: vec,
        }
    }
}

impl<G: Guard> Aligned<G> {
    pub fn as_slice(&self) -> &[G::Target] {
        unsafe {
            let ptr = self.guard.read_ptr();
            let len = self.guard.len();
            slice::from_raw_parts(ptr, len)
        }
    }

    pub fn as_mut_slice(&mut self) -> &mut [G::Target]
    where
        G: WritePtr,
    {
        unsafe {
            let ptr = self.guard.read_ptr() as *mut G::Target;
            let len = self.guard.len();
            slice::from_raw_parts_mut(ptr, len)
        }
    }
}

impl<G: Guard> Deref for Aligned<G> {
    type Target = [G::Target];
    fn deref(&self) -> &Self::Target {
        self.as_slice()
    }
}

impl<G: Guard + WritePtr> DerefMut for Aligned<G> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        self.as_mut_slice()
    }
}

impl<G> Owned<G>
where
    G: Guard + WritePtr,
    G::Target: Copy,
{
    pub fn as_slice(&self) -> &[G::Target] {
        debug_assert_eq!(
            self.guard.len(),
            self.owned.len(),
            "owned vec should be exactly as large as guard.len"
        );
        self.owned.as_slice()
    }

    pub fn as_mut_slice(&mut self) -> &mut [G::Target] {
        debug_assert_eq!(
            self.guard.len(),
            self.owned.len(),
            "owned vec should be exactly as large as guard.len"
        );
        self.owned.as_mut_slice()
    }
}

impl<G> Deref for Owned<G>
where
    G: Guard + WritePtr,
    G::Target: Copy,
{
    type Target = [G::Target];
    fn deref(&self) -> &Self::Target {
        self.as_slice()
    }
}

impl<G> DerefMut for Owned<G>
where
    G: Guard + WritePtr,
    G::Target: Copy,
{
    fn deref_mut(&mut self) -> &mut Self::Target {
        self.as_mut_slice()
    }
}

impl<G> Drop for Owned<G>
where
    G: Guard + WritePtr,
    G::Target: Copy,
{
    fn drop(&mut self) {
        unsafe {
            let mut dst = self.guard.read_ptr() as *mut G::Target;
            for o in self.owned.iter() {
                ptr::write_unaligned(dst, *o);
                dst = dst.add(1);
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    struct PtrGuard<T> {
        ptr: *const T,
        len: usize,
    }

    impl<T> Drop for PtrGuard<T> {
        fn drop(&mut self) {}
    }

    unsafe impl<T> Guard for PtrGuard<T> {
        type Target = T;
        fn len(&self) -> usize {
            self.len
        }
        fn read_ptr(&self) -> *const T {
            self.ptr
        }
    }

    unsafe impl<T> WritePtr for PtrGuard<T> {}

    #[test]
    fn it_detects_unaligned_ptrs() {
        let vec: Vec<i64> = vec![1, 2, 3, 4, 5, 6, 7, 8];
        let aligned = vec.as_ptr();
        let unaligned = unsafe { (aligned as *const u8).add(1) as *const i64 };

        assert_eq!(
            Some(vec![1, 2, 3, 4, 5, 6]),
            MaybeUnaligned::new(PtrGuard {
                ptr: aligned,
                len: 6,
            })
            .try_into_aligned()
            .map(|slice| Vec::from(&*slice))
        );

        assert!(MaybeUnaligned::new(PtrGuard {
            ptr: unaligned,
            len: 1,
        })
        .try_into_aligned()
        .is_none());
    }

    #[test]
    fn it_can_copy_back_owned() {
        let mut arr: [u8; 512] = [0; 512];

        let unaligned_ptr = unsafe {
            let mut ptr = &mut arr[0] as *mut u8;
            for _ in 0..(512 - 64) {
                if ptr as usize % mem::align_of::<i64>() != 0 {
                    break;
                }
                ptr = ptr.add(1);
            }
            assert!(ptr as usize % mem::align_of::<i64>() != 0);
            ptr as *mut i64
        };

        {
            let access = MaybeUnaligned::new(PtrGuard {
                ptr: unaligned_ptr,
                len: 8,
            });

            let mut write = access.into_owned();
            let slice = write.as_mut_slice();
            assert_eq!(8, slice.len());
            for i in 0..8 {
                slice[i] = (i * 2) as i64;
            }
        }

        let access = MaybeUnaligned::new(PtrGuard {
            ptr: unaligned_ptr,
            len: 8,
        });

        let vec = access.to_vec();

        assert_eq!(vec![0, 2, 4, 6, 8, 10, 12, 14], vec);
    }
}