1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
//! Module that holds Coproduct data structures, traits, and implementations
//!
//! Think of "Coproduct" as ad-hoc enums; allowing you to do something like this
//!
//! ```
//! #[macro_use]
//! extern crate frunk;
//!
//! # fn main() {
//! // For simplicity, assign our Coproduct type to a type alias
//! // This is purely optional.
//! type I32Bool = Coprod!(i32, bool);
//! // Inject things into our Coproduct type
//! let co1 = I32Bool::inject(3);
//! let co2 = I32Bool::inject(true);
//!
//! // Getting stuff
//! let get_from_1a: Option<&i32> = co1.get();
//! let get_from_1b: Option<&bool> = co1.get();
//! assert_eq!(get_from_1a, Some(&3));
//! assert_eq!(get_from_1b, None);
//!
//! let get_from_2a: Option<&i32> = co2.get();
//! let get_from_2b: Option<&bool> = co2.get();
//! assert_eq!(get_from_2a, None);
//! assert_eq!(get_from_2b, Some(&true));
//!
//! // *Taking* stuff (by value)
//! let take_from_1a: Option<i32> = co1.take();
//! assert_eq!(take_from_1a, Some(3));
//!
//! // Or with a Result
//! let uninject_from_1a: Result<i32, _> = co1.uninject();
//! let uninject_from_1b: Result<bool, _> = co1.uninject();
//! assert_eq!(uninject_from_1a, Ok(3));
//! assert!(uninject_from_1b.is_err());
//! # }
//! ```
//!
//! Or, if you want to "fold" over all possible values of a coproduct
//!
//! ```
//! # #[macro_use] extern crate frunk;
//! # fn main() {
//! # type I32Bool = Coprod!(i32, bool);
//! # let co1 = I32Bool::inject(3);
//! # let co2 = I32Bool::inject(true);
//! // In the below, we use unreachable!() to make it obvious hat we know what type of
//! // item is inside our coproducts co1 and co2 but in real life, you should be writing
//! // complete functions for all the cases when folding coproducts
//! //
//! // to_ref borrows every item so that we can fold without consuming the coproduct.
//! assert_eq!(
//!     co1.to_ref().fold(hlist![|&i| format!("i32 {}", i),
//!                              |&b| unreachable!() /* we know this won't happen for co1 */ ]),
//!     "i32 3".to_string());
//! assert_eq!(
//!     co2.to_ref().fold(hlist![|&i| unreachable!() /* we know this won't happen for co2 */,
//!                              |&b| String::from(if b { "t" } else { "f" })]),
//!     "t".to_string());
//!
//! // Here, we use the poly_fn! macro to declare a polymorphic function to avoid caring
//! // about the order in which declare handlers for the types in our coproduct
//! let folded = co1.fold(
//!       poly_fn![
//!         |_b: bool| -> String { unreachable!() }, /* we know this won't happen for co1 */
//!         |i:  i32 | -> String { format!("i32 {}", i) },
//!       ]
//!      );
//! assert_eq!(folded, "i32 3".to_string());
//! # }
//! ```

use hlist::{HCons, HNil};
use indices::{Here, There};
use traits::{Func, Poly, ToMut, ToRef};

/// Enum type representing a Coproduct. Think of this as a Result, but capable
/// of supporting any arbitrary number of types instead of just 2.
///
/// To construct a Coproduct, you would typically declare a type using the `Coprod!` type
/// macro and then use the `inject` method.
///
/// # Examples
///
/// ```
/// # #[macro_use] extern crate frunk;
/// # fn main() {
/// type I32Bool = Coprod!(i32, bool);
/// let co1 = I32Bool::inject(3);
/// let get_from_1a: Option<&i32> = co1.get();
/// let get_from_1b: Option<&bool> = co1.get();
/// assert_eq!(get_from_1a, Some(&3));
/// assert_eq!(get_from_1b, None);
/// # }
/// ```
#[derive(PartialEq, Debug, Eq, Clone, Copy, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum Coproduct<H, T> {
    /// Coproduct is either H or T, in this case, it is H
    Inl(H),
    /// Coproduct is either H or T, in this case, it is T
    Inr(T),
}

/// Phantom type for signature purposes only (has no value)
///
/// Used by the macro to terminate the Coproduct type signature
#[derive(PartialEq, Debug, Eq, Clone, Copy, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum CNil {}

// Inherent methods
impl<Head, Tail> Coproduct<Head, Tail> {
    /// Instantiate a coproduct from an element.
    ///
    /// This is generally much nicer than nested usage of `Coproduct::{Inl, Inr}`.
    /// The method uses a trick with type inference to automatically build the correct variant
    /// according to the input type.
    ///
    /// In standard usage, the `Index` type parameter can be ignored,
    /// as it will typically be solved for using type inference.
    ///
    /// # Rules
    ///
    /// If the type does not appear in the coproduct, the conversion is forbidden.
    ///
    /// If the type appears multiple times in the coproduct, type inference will fail.
    ///
    /// # Example
    ///
    /// ```
    /// # #[macro_use] extern crate frunk;
    /// # fn main() {
    /// use frunk::Coproduct;
    ///
    /// type I32F32 = Coprod!(i32, f32);
    ///
    /// // Constructing coproducts using inject:
    /// let co1_nice: I32F32 = Coproduct::inject(1i32);
    /// let co2_nice: I32F32 = Coproduct::inject(42f32);
    ///
    /// // Compare this to the "hard way":
    /// let co1_ugly: I32F32 = Coproduct::Inl(1i32);
    /// let co2_ugly: I32F32 = Coproduct::Inr(Coproduct::Inl(42f32));
    ///
    /// assert_eq!(co1_nice, co1_ugly);
    /// assert_eq!(co2_nice, co2_ugly);
    ///
    /// // Feel free to use `inject` on a type alias, or even directly on the
    /// // `Coprod!` macro. (the latter requires wrapping the type in `<>`)
    /// let _ = I32F32::inject(42f32);
    /// let _ = <Coprod!(i32, f32)>::inject(42f32);
    ///
    /// // You can also use a turbofish to specify the type of the input when
    /// // it is ambiguous (e.g. an empty `vec![]`).
    /// // The Index parameter should be left as `_`.
    /// type Vi32Vf32 = Coprod!(Vec<i32>, Vec<f32>);
    /// let _: Vi32Vf32 = Coproduct::inject::<Vec<i32>, _>(vec![]);
    /// # }
    /// ```
    #[inline(always)]
    pub fn inject<T, Index>(to_insert: T) -> Self
    where
        Self: CoprodInjector<T, Index>,
    {
        CoprodInjector::inject(to_insert)
    }

    /// Borrow an element from a coproduct by type.
    ///
    /// # Example
    ///
    /// ```
    /// # #[macro_use] extern crate frunk;
    /// # fn main() {
    /// type I32F32 = Coprod!(i32, f32);
    ///
    /// // You can let type inference find the desired type:
    /// let co1 = I32F32::inject(42f32);
    /// let co1_as_i32: Option<&i32> = co1.get();
    /// let co1_as_f32: Option<&f32> = co1.get();
    /// assert_eq!(co1_as_i32, None);
    /// assert_eq!(co1_as_f32, Some(&42f32));
    ///
    /// // You can also use turbofish syntax to specify the type.
    /// // The Index parameter should be left as `_`.
    /// let co2 = I32F32::inject(1i32);
    /// assert_eq!(co2.get::<i32, _>(), Some(&1));
    /// assert_eq!(co2.get::<f32, _>(), None);
    /// # }
    /// ```
    #[inline(always)]
    pub fn get<S, Index>(&self) -> Option<&S>
    where
        Self: CoproductSelector<S, Index>,
    {
        CoproductSelector::get(self)
    }

    /// Retrieve an element from a coproduct by type, ignoring all others.
    ///
    /// # Example
    ///
    /// ```
    /// # #[macro_use] extern crate frunk;
    /// # fn main() {
    /// type I32F32 = Coprod!(i32, f32);
    ///
    /// // You can let type inference find the desired type:
    /// let co1 = I32F32::inject(42f32);
    /// let co1_as_i32: Option<i32> = co1.take();
    /// let co1_as_f32: Option<f32> = co1.take();
    /// assert_eq!(co1_as_i32, None);
    /// assert_eq!(co1_as_f32, Some(42f32));
    ///
    /// // You can also use turbofish syntax to specify the type.
    /// // The Index parameter should be left as `_`.
    /// let co2 = I32F32::inject(1i32);
    /// assert_eq!(co2.take::<i32, _>(), Some(1));
    /// assert_eq!(co2.take::<f32, _>(), None);
    /// # }
    /// ```
    #[inline(always)]
    pub fn take<T, Index>(self) -> Option<T>
    where
        Self: CoproductTaker<T, Index>,
    {
        CoproductTaker::take(self)
    }

    /// Attempt to extract a value from a coproduct (or get the remaining possibilities).
    ///
    /// By chaining calls to this, one can exhaustively match all variants of a coproduct.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// # #[macro_use] extern crate frunk;
    /// # fn main() {
    /// type I32F32 = Coprod!(i32, f32);
    /// type I32 = Coprod!(i32); // remainder after uninjecting f32
    /// type F32 = Coprod!(f32); // remainder after uninjecting i32
    ///
    /// let co1 = I32F32::inject(42f32);
    ///
    /// // You can let type inference find the desired type.
    /// let co1 = I32F32::inject(42f32);
    /// let co1_as_i32: Result<i32, F32> = co1.uninject();
    /// let co1_as_f32: Result<f32, I32> = co1.uninject();
    /// assert_eq!(co1_as_i32, Err(F32::inject(42f32)));
    /// assert_eq!(co1_as_f32, Ok(42f32));
    ///
    /// // It is not necessary to annotate the type of the remainder:
    /// let res: Result<i32, _> = co1.uninject();
    /// assert!(res.is_err());
    ///
    /// // You can also use turbofish syntax to specify the type.
    /// // The Index parameter should be left as `_`.
    /// let co2 = I32F32::inject(1i32);
    /// assert_eq!(co2.uninject::<i32, _>(), Ok(1));
    /// assert_eq!(co2.uninject::<f32, _>(), Err(I32::inject(1)));
    /// # }
    /// ```
    ///
    /// Chaining calls for an exhaustive match:
    ///
    /// ```rust
    /// # #[macro_use] extern crate frunk;
    /// # fn main() {
    /// type I32F32 = Coprod!(i32, f32);
    ///
    /// // Be aware that this particular example could be
    /// // written far more succinctly using `fold`.
    /// fn handle_i32_f32(co: I32F32) -> &'static str {
    ///     // Remove i32 from the coproduct
    ///     let co = match co.uninject::<i32, _>() {
    ///         Ok(x) => return "integer!",
    ///         Err(co) => co,
    ///     };
    ///
    ///     // Remove f32 from the coproduct
    ///     let co = match co.uninject::<f32, _>() {
    ///         Ok(x) => return "float!",
    ///         Err(co) => co,
    ///     };
    ///
    ///     // Now co is empty
    ///     match co { /* unreachable */ }
    /// }
    ///
    /// assert_eq!(handle_i32_f32(I32F32::inject(3)), "integer!");
    /// assert_eq!(handle_i32_f32(I32F32::inject(3.0)), "float!");
    /// # }
    #[inline(always)]
    pub fn uninject<T, Index>(self) -> Result<T, <Self as CoprodUninjector<T, Index>>::Remainder>
    where
        Self: CoprodUninjector<T, Index>,
    {
        CoprodUninjector::uninject(self)
    }

    /// Extract a subset of the possible types in a coproduct (or get the remaining possibilities)
    ///
    /// This is basically [`uninject`] on steroids.  It lets you remove a number
    /// of types from a coproduct at once, leaving behind the remainder in an `Err`.
    /// For instance, one can extract `Coprod!(C, A)` from `Coprod!(A, B, C, D)`
    /// to produce `Result<Coprod!(C, A), Coprod!(B, D)>`.
    ///
    /// Each type in the extracted subset is required to be part of the input coproduct.
    ///
    /// [`uninject`]: #method.uninject
    ///
    /// # Example
    ///
    /// Basic usage:
    ///
    /// ```
    /// # #[macro_use] extern crate frunk;
    /// use ::frunk::Coproduct;
    ///
    /// # fn main() {
    /// type I32BoolF32 = Coprod!(i32, bool, f32);
    /// type I32F32 = Coprod!(i32, f32);
    ///
    /// let co1 = I32BoolF32::inject(42_f32);
    /// let co2 = I32BoolF32::inject(true);
    ///
    /// let sub1: Result<Coprod!(i32, f32), _> = co1.subset();
    /// let sub2: Result<Coprod!(i32, f32), _> = co2.subset();
    /// assert!(sub1.is_ok());
    /// assert!(sub2.is_err());
    ///
    /// // Turbofish syntax for specifying the target subset is also supported.
    /// // The Indices parameter should be left to type inference using `_`.
    /// assert!(co1.subset::<Coprod!(i32, f32), _>().is_ok());
    /// assert!(co2.subset::<Coprod!(i32, f32), _>().is_err());
    ///
    /// // Order doesn't matter.
    /// assert!(co1.subset::<Coprod!(f32, i32), _>().is_ok());
    /// # }
    /// ```
    ///
    /// Like `uninject`, `subset` can be used for exhaustive matching,
    /// with the advantage that it can remove more than one type at a time:
    ///
    /// ```
    /// # #[macro_use] extern crate frunk;
    /// use frunk::Coproduct;
    ///
    /// # fn main() {
    /// fn handle_stringly_things(co: Coprod!(&'static str, String)) -> String {
    ///     co.fold(hlist![
    ///         |s| format!("&str {}", s),
    ///         |s| format!("String {}", s),
    ///     ])
    /// }
    ///
    /// fn handle_countly_things(co: Coprod!(u32)) -> String {
    ///     co.fold(hlist![
    ///         |n| vec!["."; n as usize].concat(),
    ///     ])
    /// }
    ///
    /// fn handle_all(co: Coprod!(String, u32, &'static str)) -> String {
    ///     // co is currently Coprod!(String, u32, &'static str)
    ///     let co = match co.subset().map(handle_stringly_things) {
    ///         Ok(s) => return s,
    ///         Err(co) => co,
    ///     };
    ///
    ///     // Now co is Coprod!(u32).
    ///     let co = match co.subset().map(handle_countly_things) {
    ///         Ok(s) => return s,
    ///         Err(co) => co,
    ///     };
    ///
    ///     // Now co is empty.
    ///     match co { /* unreachable */ }
    /// }
    ///
    /// assert_eq!(handle_all(Coproduct::inject("hello")), "&str hello");
    /// assert_eq!(handle_all(Coproduct::inject(String::from("World!"))), "String World!");
    /// assert_eq!(handle_all(Coproduct::inject(4)), "....");
    /// # }
    /// ```
    #[inline(always)]
    pub fn subset<Targets, Indices>(
        self,
    ) -> Result<Targets, <Self as CoproductSubsetter<Targets, Indices>>::Remainder>
    where
        Self: CoproductSubsetter<Targets, Indices>,
    {
        CoproductSubsetter::subset(self)
    }

    /// Convert a coproduct into another that can hold its variants.
    ///
    /// This converts a coproduct into another one which is capable of holding each
    /// of its types. The most well-supported use-cases (i.e. those where type inference
    /// is capable of solving for the indices) are:
    ///
    /// * Reordering variants: `Coprod!(C, A, B) -> Coprod!(A, B, C)`
    /// * Embedding into a superset: `Coprod!(B, D) -> Coprod!(A, B, C, D, E)`
    /// * Coalescing duplicate inputs: `Coprod!(B, B, B, B) -> Coprod!(A, B, C)`
    ///
    /// and of course any combination thereof.
    ///
    /// # Rules
    ///
    /// If any type in the input does not appear in the output, the conversion is forbidden.
    ///
    /// If any type in the input appears multiple times in the output, type inference will fail.
    ///
    /// All of these rules fall naturally out of its fairly simple definition,
    /// which is equivalent to:
    ///
    /// ```text
    /// coprod.fold(hlist![
    ///     |x| Coproduct::inject(x),
    ///     |x| Coproduct::inject(x),
    ///             ...
    ///     |x| Coproduct::inject(x),
    /// ])
    /// ```
    ///
    /// # Example
    ///
    /// ```
    /// # #[macro_use] extern crate frunk;
    /// # fn main() {
    /// type I32BoolF32 = Coprod!(i32, bool, f32);
    /// type BoolI32 = Coprod!(bool, i32);
    ///
    /// let co = BoolI32::inject(true);
    /// let embedded: I32BoolF32 = co.embed();
    /// assert_eq!(embedded, I32BoolF32::inject(true));
    ///
    /// // Turbofish syntax for specifying the output type is also supported.
    /// // The Indices parameter should be left to type inference using `_`.
    /// let embedded = co.embed::<I32BoolF32, _>();
    /// assert_eq!(embedded, I32BoolF32::inject(true));
    /// # }
    /// ```
    #[inline(always)]
    pub fn embed<Targets, Indices>(self) -> Targets
    where
        Self: CoproductEmbedder<Targets, Indices>,
    {
        CoproductEmbedder::embed(self)
    }

    /// Borrow each variant of the Coproduct.
    ///
    /// # Example
    ///
    /// Composing with `subset` to match a subset of variants without
    /// consuming the coproduct:
    ///
    /// ```
    /// # #[macro_use] extern crate frunk; fn main() {
    /// use frunk::Coproduct;
    ///
    /// let co: Coprod!(i32, bool, String) = Coproduct::inject(true);
    ///
    /// assert!(co.to_ref().subset::<Coprod!(&bool, &String), _>().is_ok());
    /// # }
    /// ```
    #[inline(always)]
    pub fn to_ref<'a>(&'a self) -> <Self as ToRef<'a>>::Output
    where
        Self: ToRef<'a>,
    {
        ToRef::to_ref(self)
    }

    /// Borrow each variant of the `Coproduct` mutably.
    ///
    /// # Example
    ///
    /// Composing with `subset` to match a subset of variants without
    /// consuming the coproduct:
    ///
    /// ```
    /// # #[macro_use] extern crate frunk; fn main() {
    /// use frunk::Coproduct;
    ///
    /// let mut co: Coprod!(i32, bool, String) = Coproduct::inject(true);
    ///
    /// assert!(co.to_mut().subset::<Coprod!(&mut bool, &mut String), _>().is_ok());
    /// # }
    /// ```
    #[inline(always)]
    pub fn to_mut<'a>(&'a mut self) -> <Self as ToMut<'a>>::Output
    where
        Self: ToMut<'a>,
    {
        ToMut::to_mut(self)
    }

    /// Use functions to transform a Coproduct into a single value.
    ///
    /// A variety of types are supported for the `Folder` argument:
    ///
    /// * An `hlist![]` of closures (one for each type, in order).
    /// * A single closure (for a Coproduct that is homogenous).
    /// * A single [`Poly`].
    ///
    /// [`Poly`]: ../traits/struct.Poly.html
    ///
    /// # Example
    ///
    /// ```
    /// # #[macro_use] extern crate frunk;
    /// # fn main() {
    /// type I32F32StrBool = Coprod!(i32, f32, bool);
    ///
    /// let co1 = I32F32StrBool::inject(3);
    /// let co2 = I32F32StrBool::inject(true);
    /// let co3 = I32F32StrBool::inject(42f32);
    ///
    /// let folder = hlist![|&i| format!("int {}", i),
    ///                     |&f| format!("float {}", f),
    ///                     |&b| (if b { "t" } else { "f" }).to_string()];
    ///
    /// assert_eq!(co1.to_ref().fold(folder), "int 3".to_string());
    /// # }
    /// ```
    ///
    /// Using a polymorphic function type has the advantage of not
    /// forcing you to care about the order in which you declare
    /// handlers for the types in your Coproduct.
    ///
    /// ```
    /// # #[macro_use] extern crate frunk;
    /// # fn main() {
    /// use frunk::{Poly, Func};
    ///
    /// type I32F32StrBool = Coprod!(i32, f32, bool);
    ///
    /// impl Func<i32> for P {
    ///     type Output = bool;
    ///     fn call(args: i32) -> Self::Output {
    ///         args > 100
    ///     }
    /// }
    /// impl Func<bool> for P {
    ///     type Output = bool;
    ///     fn call(args: bool) -> Self::Output {
    ///         args
    ///     }
    /// }
    /// impl Func<f32> for P {
    ///     type Output = bool;
    ///     fn call(args: f32) -> Self::Output {
    ///         args > 9000f32
    ///     }
    /// }
    /// struct P;
    ///
    /// let co1 = I32F32StrBool::inject(3);
    /// let folded = co1.fold(Poly(P));
    /// # }
    /// ```
    #[inline(always)]
    pub fn fold<Output, Folder>(self, folder: Folder) -> Output
    where
        Self: CoproductFoldable<Folder, Output>,
    {
        CoproductFoldable::fold(self, folder)
    }
}

/// Trait for instantiating a coproduct from an element
///
/// This trait is part of the implementation of the inherent static method
/// [`Coproduct::inject`]. Please see that method for more information.
///
/// You only need to import this trait when working with generic
/// Coproducts of unknown type. In most code, `Coproduct::inject` will
/// "just work," with or without this trait.
///
/// [`Coproduct::inject`]: enum.Coproduct.html#method.inject
pub trait CoprodInjector<InjectType, Index> {
    /// Instantiate a coproduct from an element.
    ///
    /// Please see the [inherent static method] for more information.
    ///
    /// The only difference between that inherent method and this
    /// trait method is the location of the type parameters.
    /// (here, they are on the trait rather than the method)
    ///
    /// [inherent static method]: enum.Coproduct.html#method.inject
    fn inject(to_insert: InjectType) -> Self;
}

impl<I, Tail> CoprodInjector<I, Here> for Coproduct<I, Tail> {
    fn inject(to_insert: I) -> Self {
        Coproduct::Inl(to_insert)
    }
}

impl<Head, I, Tail, TailIndex> CoprodInjector<I, There<TailIndex>> for Coproduct<Head, Tail>
where
    Tail: CoprodInjector<I, TailIndex>,
{
    fn inject(to_insert: I) -> Self {
        let tail_inserted = <Tail as CoprodInjector<I, TailIndex>>::inject(to_insert);
        Coproduct::Inr(tail_inserted)
    }
}

// For turning something into a Coproduct -->

/// Trait for borrowing a coproduct element by type
///
/// This trait is part of the implementation of the inherent method
/// [`Coproduct::get`]. Please see that method for more information.
///
/// You only need to import this trait when working with generic
/// Coproducts of unknown type. If you have a Coproduct of known type,
/// then `co.get()` should "just work" even without the trait.
///
/// [`Coproduct::get`]: enum.Coproduct.html#method.get
pub trait CoproductSelector<S, I> {
    /// Borrow an element from a coproduct by type.
    ///
    /// Please see the [inherent method] for more information.
    ///
    /// The only difference between that inherent method and this
    /// trait method is the location of the type parameters.
    /// (here, they are on the trait rather than the method)
    ///
    /// [inherent method]: enum.Coproduct.html#method.get
    fn get(&self) -> Option<&S>;
}

impl<Head, Tail> CoproductSelector<Head, Here> for Coproduct<Head, Tail> {
    fn get(&self) -> Option<&Head> {
        use self::Coproduct::*;
        match *self {
            Inl(ref thing) => Some(thing),
            _ => None, // Impossible
        }
    }
}

impl<Head, FromTail, Tail, TailIndex> CoproductSelector<FromTail, There<TailIndex>>
    for Coproduct<Head, Tail>
where
    Tail: CoproductSelector<FromTail, TailIndex>,
{
    fn get(&self) -> Option<&FromTail> {
        use self::Coproduct::*;
        match *self {
            Inr(ref rest) => rest.get(),
            _ => None, // Impossible
        }
    }
}

/// Trait for retrieving a coproduct element by type
///
/// This trait is part of the implementation of the inherent method
/// [`Coproduct::take`]. Please see that method for more information.
///
/// You only need to import this trait when working with generic
/// Coproducts of unknown type. If you have a Coproduct of known type,
/// then `co.take()` should "just work" even without the trait.
///
/// [`Coproduct::take`]: enum.Coproduct.html#method.take
pub trait CoproductTaker<S, I> {
    /// Retrieve an element from a coproduct by type, ignoring all others.
    ///
    /// Please see the [inherent method] for more information.
    ///
    /// The only difference between that inherent method and this
    /// trait method is the location of the type parameters.
    /// (here, they are on the trait rather than the method)
    ///
    /// [inherent method]: enum.Coproduct.html#method.take
    fn take(self) -> Option<S>;
}

impl<Head, Tail> CoproductTaker<Head, Here> for Coproduct<Head, Tail> {
    fn take(self) -> Option<Head> {
        use self::Coproduct::*;
        match self {
            Inl(thing) => Some(thing),
            _ => None, // Impossible
        }
    }
}

impl<Head, FromTail, Tail, TailIndex> CoproductTaker<FromTail, There<TailIndex>>
    for Coproduct<Head, Tail>
where
    Tail: CoproductTaker<FromTail, TailIndex>,
{
    fn take(self) -> Option<FromTail> {
        use self::Coproduct::*;
        match self {
            Inr(rest) => rest.take(),
            _ => None, // Impossible
        }
    }
}

/// Trait for folding a coproduct into a single value.
///
/// This trait is part of the implementation of the inherent method
/// [`Coproduct::fold`]. Please see that method for more information.
///
/// You only need to import this trait when working with generic
/// Coproducts or Folders of unknown type. If the type of everything is known,
/// then `co.fold(folder)` should "just work" even without the trait.
///
/// [`Coproduct::fold`]: enum.Coproduct.html#method.fold
pub trait CoproductFoldable<Folder, Output> {
    /// Use functions to fold a coproduct into a single value.
    ///
    /// Please see the [inherent method] for more information.
    ///
    /// The only difference between that inherent method and this
    /// trait method is the location of the type parameters.
    /// (here, they are on the trait rather than the method)
    ///
    /// [inherent method]: enum.Coproduct.html#method.fold
    fn fold(self, f: Folder) -> Output;
}

impl<P, R, CH, CTail> CoproductFoldable<Poly<P>, R> for Coproduct<CH, CTail>
where
    P: Func<CH, Output = R>,
    CTail: CoproductFoldable<Poly<P>, R>,
{
    fn fold(self, f: Poly<P>) -> R {
        use self::Coproduct::*;
        match self {
            Inl(r) => P::call(r),
            Inr(rest) => rest.fold(f),
        }
    }
}

impl<F, R, FTail, CH, CTail> CoproductFoldable<HCons<F, FTail>, R> for Coproduct<CH, CTail>
where
    F: FnOnce(CH) -> R,
    CTail: CoproductFoldable<FTail, R>,
{
    fn fold(self, f: HCons<F, FTail>) -> R {
        use self::Coproduct::*;
        let f_head = f.head;
        let f_tail = f.tail;
        match self {
            Inl(r) => (f_head)(r),
            Inr(rest) => rest.fold(f_tail),
        }
    }
}

/// This is literally impossible; CNil is not instantiable
impl<F, R> CoproductFoldable<F, R> for CNil {
    fn fold(self, _: F) -> R {
        unreachable!()
    }
}

impl<'a, CH: 'a, CTail> ToRef<'a> for Coproduct<CH, CTail>
where
    CTail: ToRef<'a>,
{
    type Output = Coproduct<&'a CH, <CTail as ToRef<'a>>::Output>;

    #[inline(always)]
    fn to_ref(&'a self) -> Self::Output {
        match *self {
            Coproduct::Inl(ref r) => Coproduct::Inl(r),
            Coproduct::Inr(ref rest) => Coproduct::Inr(rest.to_ref()),
        }
    }
}

impl<'a> ToRef<'a> for CNil {
    type Output = CNil;

    fn to_ref(&'a self) -> CNil {
        match *self {}
    }
}

impl<'a, CH: 'a, CTail> ToMut<'a> for Coproduct<CH, CTail>
where
    CTail: ToMut<'a>,
{
    type Output = Coproduct<&'a mut CH, <CTail as ToMut<'a>>::Output>;

    #[inline(always)]
    fn to_mut(&'a mut self) -> Self::Output {
        match *self {
            Coproduct::Inl(ref mut r) => Coproduct::Inl(r),
            Coproduct::Inr(ref mut rest) => Coproduct::Inr(rest.to_mut()),
        }
    }
}

impl<'a> ToMut<'a> for CNil {
    type Output = CNil;

    fn to_mut(&'a mut self) -> CNil {
        match *self {}
    }
}

/// Trait for extracting a value from a coproduct in an exhaustive way.
///
/// This trait is part of the implementation of the inherent method
/// [`Coproduct::uninject`]. Please see that method for more information.
///
/// You only need to import this trait when working with generic
/// Coproducts of unknown type. If you have a Coproduct of known type,
/// then `co.uninject()` should "just work" even without the trait.
///
/// [`Coproduct::uninject`]: enum.Coproduct.html#method.uninject
pub trait CoprodUninjector<T, Idx>: CoprodInjector<T, Idx> {
    type Remainder;

    /// Attempt to extract a value from a coproduct (or get the remaining possibilities).
    ///
    /// Please see the [inherent method] for more information.
    ///
    /// The only difference between that inherent method and this
    /// trait method is the location of the type parameters.
    /// (here, they are on the trait rather than the method)
    ///
    /// [inherent method]: enum.Coproduct.html#method.uninject
    fn uninject(self) -> Result<T, Self::Remainder>;
}

impl<Hd, Tl> CoprodUninjector<Hd, Here> for Coproduct<Hd, Tl> {
    type Remainder = Tl;

    fn uninject(self) -> Result<Hd, Tl> {
        match self {
            Coproduct::Inl(h) => Ok(h),
            Coproduct::Inr(t) => Err(t),
        }
    }
}

impl<Hd, Tl, T, N> CoprodUninjector<T, There<N>> for Coproduct<Hd, Tl>
where
    Tl: CoprodUninjector<T, N>,
{
    type Remainder = Coproduct<Hd, Tl::Remainder>;

    fn uninject(self) -> Result<T, Self::Remainder> {
        match self {
            Coproduct::Inl(h) => Err(Coproduct::Inl(h)),
            Coproduct::Inr(t) => t.uninject().map_err(Coproduct::Inr),
        }
    }
}

/// Trait for extracting a subset of the possible types in a coproduct.
///
/// This trait is part of the implementation of the inherent method
/// [`Coproduct::subset`]. Please see that method for more information.
///
/// You only need to import this trait when working with generic
/// Coproducts of unknown type. If you have a Coproduct of known type,
/// then `co.subset()` should "just work" even without the trait.
///
/// [`Coproduct::subset`]: enum.Coproduct.html#method.subset
pub trait CoproductSubsetter<Targets, Indices>: Sized {
    type Remainder;

    /// Extract a subset of the possible types in a coproduct (or get the remaining possibilities)
    ///
    /// Please see the [inherent method] for more information.
    ///
    /// The only difference between that inherent method and this
    /// trait method is the location of the type parameters.
    /// (here, they are on the trait rather than the method)
    ///
    /// [inherent method]: enum.Coproduct.html#method.subset
    fn subset(self) -> Result<Targets, Self::Remainder>;
}

impl<Choices, THead, TTail, NHead, NTail, Rem>
    CoproductSubsetter<Coproduct<THead, TTail>, HCons<NHead, NTail>> for Choices
where
    Self: CoprodUninjector<THead, NHead, Remainder = Rem>,
    Rem: CoproductSubsetter<TTail, NTail>,
{
    type Remainder = <Rem as CoproductSubsetter<TTail, NTail>>::Remainder;

    /// Attempt to extract a value from a subset of the types.
    fn subset(self) -> Result<Coproduct<THead, TTail>, Self::Remainder> {
        match self.uninject() {
            Ok(good) => Ok(Coproduct::Inl(good)),
            Err(bads) => match bads.subset() {
                Ok(goods) => Ok(Coproduct::Inr(goods)),
                Err(bads) => Err(bads),
            },
        }
    }
}

impl<Choices> CoproductSubsetter<CNil, HNil> for Choices {
    type Remainder = Self;

    #[inline(always)]
    fn subset(self) -> Result<CNil, Self::Remainder> {
        Err(self)
    }
}

/// Trait for converting a coproduct into another that can hold its variants.
///
/// This trait is part of the implementation of the inherent method
/// [`Coproduct::embed`]. Please see that method for more information.
///
/// You only need to import this trait when working with generic
/// Coproducts of unknown type. If you have a Coproduct of known type,
/// then `co.embed()` should "just work" even without the trait.
///
/// [`Coproduct::embed`]: enum.Coproduct.html#method.embed
pub trait CoproductEmbedder<Out, Indices> {
    /// Convert a coproduct into another that can hold its variants.
    ///
    /// Please see the [inherent method] for more information.
    ///
    /// The only difference between that inherent method and this
    /// trait method is the location of the type parameters.
    /// (here, they are on the trait rather than the method)
    ///
    /// [inherent method]: enum.Coproduct.html#method.embed
    fn embed(self) -> Out;
}

impl CoproductEmbedder<CNil, HNil> for CNil {
    fn embed(self) -> CNil {
        match self {
        // impossible!
    }
    }
}

impl<Head, Tail> CoproductEmbedder<Coproduct<Head, Tail>, HNil> for CNil
where
    CNil: CoproductEmbedder<Tail, HNil>,
{
    fn embed(self) -> Coproduct<Head, Tail> {
        match self {
        // impossible!
    }
    }
}

impl<Head, Tail, Out, NHead, NTail> CoproductEmbedder<Out, HCons<NHead, NTail>>
    for Coproduct<Head, Tail>
where
    Out: CoprodInjector<Head, NHead>,
    Tail: CoproductEmbedder<Out, NTail>,
{
    fn embed(self) -> Out {
        match self {
            Coproduct::Inl(this) => Out::inject(this),
            Coproduct::Inr(those) => those.embed(),
        }
    }
}

#[cfg(test)]
mod tests {
    use super::Coproduct::*;
    use super::*;

    #[test]
    fn test_coproduct_inject() {
        type I32StrBool = Coprod!(i32, &'static str, bool);

        let co1 = I32StrBool::inject(3);
        assert_eq!(co1, Inl(3));
        let get_from_1a: Option<&i32> = co1.get();
        let get_from_1b: Option<&bool> = co1.get();
        assert_eq!(get_from_1a, Some(&3));
        assert_eq!(get_from_1b, None);

        let co2 = I32StrBool::inject(false);
        assert_eq!(co2, Inr(Inr(Inl(false))));
        let get_from_2a: Option<&i32> = co2.get();
        let get_from_2b: Option<&bool> = co2.get();
        assert_eq!(get_from_2a, None);
        assert_eq!(get_from_2b, Some(&false));
    }

    #[test]
    #[cfg(feature = "std")]
    fn test_coproduct_fold_consuming() {
        type I32F32StrBool = Coprod!(i32, f32, bool);

        let co1 = I32F32StrBool::inject(3);
        let folded = co1.fold(hlist![
            |i| format!("int {}", i),
            |f| format!("float {}", f),
            |b| (if b { "t" } else { "f" }).to_string(),
        ]);

        assert_eq!(folded, "int 3".to_string());
    }

    #[test]
    fn test_coproduct_poly_fold_consuming() {
        type I32F32StrBool = Coprod!(i32, f32, bool);

        impl Func<i32> for P {
            type Output = bool;
            fn call(args: i32) -> Self::Output {
                args > 100
            }
        }
        impl Func<bool> for P {
            type Output = bool;
            fn call(args: bool) -> Self::Output {
                args
            }
        }
        impl Func<f32> for P {
            type Output = bool;
            fn call(args: f32) -> Self::Output {
                args > 9000f32
            }
        }
        struct P;

        let co1 = I32F32StrBool::inject(3);
        let folded = co1.fold(Poly(P));

        assert_eq!(folded, false);
    }

    #[test]
    #[cfg(feature = "std")]
    fn test_coproduct_fold_non_consuming() {
        type I32F32Bool = Coprod!(i32, f32, bool);

        let co1 = I32F32Bool::inject(3);
        let co2 = I32F32Bool::inject(true);
        let co3 = I32F32Bool::inject(42f32);

        assert_eq!(
            co1.to_ref().fold(hlist![
                |&i| format!("int {}", i),
                |&f| format!("float {}", f),
                |&b| (if b { "t" } else { "f" }).to_string(),
            ]),
            "int 3".to_string()
        );
        assert_eq!(
            co2.to_ref().fold(hlist![
                |&i| format!("int {}", i),
                |&f| format!("float {}", f),
                |&b| (if b { "t" } else { "f" }).to_string(),
            ]),
            "t".to_string()
        );
        assert_eq!(
            co3.to_ref().fold(hlist![
                |&i| format!("int {}", i),
                |&f| format!("float {}", f),
                |&b| (if b { "t" } else { "f" }).to_string(),
            ]),
            "float 42".to_string()
        );
    }

    #[test]
    fn test_coproduct_uninject() {
        type I32StrBool = Coprod!(i32, &'static str, bool);

        let co1 = I32StrBool::inject(3);
        let co2 = I32StrBool::inject("hello");
        let co3 = I32StrBool::inject(false);

        let uninject_i32_co1: Result<i32, _> = co1.uninject();
        let uninject_str_co1: Result<&'static str, _> = co1.uninject();
        let uninject_bool_co1: Result<bool, _> = co1.uninject();
        assert_eq!(uninject_i32_co1, Ok(3));
        assert!(uninject_str_co1.is_err());
        assert!(uninject_bool_co1.is_err());

        let uninject_i32_co2: Result<i32, _> = co2.uninject();
        let uninject_str_co2: Result<&'static str, _> = co2.uninject();
        let uninject_bool_co2: Result<bool, _> = co2.uninject();
        assert!(uninject_i32_co2.is_err());
        assert_eq!(uninject_str_co2, Ok("hello"));
        assert!(uninject_bool_co2.is_err());

        let uninject_i32_co3: Result<i32, _> = co3.uninject();
        let uninject_str_co3: Result<&'static str, _> = co3.uninject();
        let uninject_bool_co3: Result<bool, _> = co3.uninject();
        assert!(uninject_i32_co3.is_err());
        assert!(uninject_str_co3.is_err());
        assert_eq!(uninject_bool_co3, Ok(false));
    }

    #[test]
    fn test_coproduct_subset() {
        type I32StrBool = Coprod!(i32, &'static str, bool);

        // CNil can be extracted from anything.
        let res: Result<CNil, _> = I32StrBool::inject(3).subset();
        assert!(res.is_err());

        if false {
            #[allow(unreachable_code)]
            {
                // ...including CNil.
                #[allow(unused)]
                let cnil: CNil = panic!();
                let res: Result<CNil, _> = cnil.subset();
                let _ = res;
            }
        }

        {
            // Order does not matter.
            let co = I32StrBool::inject(3);
            let res: Result<Coprod!(bool, i32), _> = co.subset();
            assert_eq!(res, Ok(Coproduct::Inr(Coproduct::Inl(3))));

            let co = I32StrBool::inject("4");
            let res: Result<Coprod!(bool, i32), _> = co.subset();
            assert_eq!(res, Err(Coproduct::Inl("4")));
        }
    }

    #[test]
    fn test_coproduct_embed() {
        // CNil can be embedded into any coproduct.
        if false {
            #[allow(unreachable_code)]
            {
                #[allow(unused)]
                let cnil: CNil = panic!();
                let _: CNil = cnil.embed();

                #[allow(unused)]
                let cnil: CNil = panic!();
                let _: Coprod!(i32, bool) = cnil.embed();
            }
        }

        #[derive(Debug, PartialEq)]
        struct A;
        #[derive(Debug, PartialEq)]
        struct B;
        #[derive(Debug, PartialEq)]
        struct C;

        {
            // Order does not matter.
            let co_a = <Coprod!(C, A, B)>::inject(A);
            let co_b = <Coprod!(C, A, B)>::inject(B);
            let co_c = <Coprod!(C, A, B)>::inject(C);
            let out_a: Coprod!(A, B, C) = co_a.embed();
            let out_b: Coprod!(A, B, C) = co_b.embed();
            let out_c: Coprod!(A, B, C) = co_c.embed();
            assert_eq!(out_a, Coproduct::Inl(A));
            assert_eq!(out_b, Coproduct::Inr(Coproduct::Inl(B)));
            assert_eq!(out_c, Coproduct::Inr(Coproduct::Inr(Coproduct::Inl(C))));
        }

        {
            // Multiple variants can resolve to the same output w/o type annotations
            type ABC = Coprod!(A, B, C);
            type BBB = Coprod!(B, B, B);

            let b1 = BBB::inject::<_, Here>(B);
            let b2 = BBB::inject::<_, There<Here>>(B);
            let out1: ABC = b1.embed();
            let out2: ABC = b2.embed();
            assert_eq!(out1, Coproduct::Inr(Coproduct::Inl(B)));
            assert_eq!(out2, Coproduct::Inr(Coproduct::Inl(B)));
        }
    }
}