1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
//! A thread-safe least-frequently-used cache which provides an `Iterator`.
//!
//! Example:
//! ```
//! use freqache::LFUCache;
//!
//! let mut cache = LFUCache::new();
//! cache.insert("key1");
//! cache.insert("key2");
//! cache.insert("key3");
//! cache.insert("key2");
//!
//! for key in cache.iter() {
//!     println!("key: {}", key);
//! }
//! ```

use std::borrow::Borrow;
use std::collections::HashMap;
use std::hash::Hash;
use std::mem;
use std::sync::{RwLock, RwLockReadGuard, RwLockWriteGuard};

struct Inner<K> {
    prev: Option<K>,
    next: Option<K>,
}

struct Item<K> {
    inner: RwLock<Inner<K>>,
}

impl<K> Item<K> {
    fn read(&self) -> RwLockReadGuard<Inner<K>> {
        self.inner.read().expect("item")
    }

    fn write(&self) -> RwLockWriteGuard<Inner<K>> {
        self.inner.write().expect("item")
    }
}

pub struct State<K> {
    cache: HashMap<K, Item<K>>,
    first: Option<K>,
    last: Option<K>,
}

impl<K: Clone + Eq + Hash> State<K> {
    fn bump(&mut self, key: K) {
        let mut item = if let Some(item) = self.cache.get(&key) {
            item.write()
        } else {
            return;
        };

        let last = if item.next.is_none() {
            // can't bump the first item
            return;
        } else if item.prev.is_none() && item.next.is_some() {
            // bump the last item

            let next_key = item.next.as_ref().expect("next key");
            let mut next = self.cache.get(next_key).expect("next item").write();

            mem::swap(&mut next.prev, &mut item.prev); // set next.prev
            mem::swap(&mut item.next, &mut next.next); // set item.next
            mem::swap(&mut item.prev, &mut next.next); // set item.prev & next.next

            item.prev.clone()
        } else {
            // bump an item in the middle

            let prev_key = item.prev.as_ref().expect("previous key");
            let mut prev = self.cache.get(prev_key).expect("previous item").write();

            let next_key = item.next.as_ref().expect("next key").clone();
            let mut next = self.cache.get(&next_key).expect("next item").write();

            mem::swap(&mut prev.next, &mut item.next); // set prev.next
            mem::swap(&mut item.next, &mut next.next); // set item.next
            mem::swap(&mut next.prev, &mut item.prev); // set next.prev

            item.prev = Some(next_key); // set item.prev

            None
        };

        let first = if let Some(next_key) = &item.next {
            let mut skip = self.cache.get(next_key).expect("skipped item").write();
            skip.prev = Some(key);
            None
        } else {
            Some(key)
        };

        match (last, first) {
            (Some(last), None) => self.last = Some(last),
            (None, Some(first)) => self.first = Some(first),
            (Some(last), Some(first)) => {
                self.last = Some(last);
                self.first = Some(first);
            }
            (None, None) => {}
        }
    }
}

/// A weighted, thread-safe least-frequently-used cache
pub struct LFUCache<K> {
    state: RwLock<State<K>>,
}

impl<K: Clone + Eq + Hash> LFUCache<K> {
    /// Construct a new `LFUCache`.
    pub fn new() -> Self {
        let state = State {
            cache: HashMap::new(),
            first: None,
            last: None,
        };

        Self {
            state: RwLock::new(state),
        }
    }

    /// Return `true` if the cache contains the given key.
    pub fn contains_key<Q: ?Sized>(&self, key: &Q) -> bool
    where
        K: Borrow<Q>,
        Q: Hash + Eq,
    {
        let state = self.state.read().expect("LFU read lock");
        state.cache.contains_key(key)
    }

    /// Add a new key to the cache and return `true` is it was already present, otherwise `false`.
    ///
    /// If already present, the key's priority is increased by one.
    pub fn insert(&self, key: K) -> bool {
        let mut state = self.state.write().expect("LFU write lock");

        if state.cache.contains_key(&key) {
            state.bump(key);
            true
        } else {
            let prev = None;
            let mut next = Some(key.clone());
            mem::swap(&mut state.last, &mut next);

            if let Some(next_key) = &next {
                let mut next = state.cache.get(next_key).expect("next item").write();

                next.prev = Some(key.clone());
            }

            if state.first.is_none() {
                state.first = Some(key.clone());
            }

            let item = Item {
                inner: RwLock::new(Inner { prev, next }),
            };
            state.cache.insert(key, item);

            false
        }
    }

    /// Return `true` if the cache is empty.
    pub fn is_empty(&self) -> bool {
        self.state.read().expect("LFU cache state").cache.is_empty()
    }

    /// Return the number of entries in this cache.
    pub fn len(&self) -> usize {
        self.state.read().expect("LFU cache state").cache.len()
    }

    /// Remove an entry from the cache and return `true` if it was present or `false` if not.
    pub fn remove(&self, key: &K) -> bool {
        let mut state = self.state.write().expect("LFU cache state");

        if let Some(item) = state.cache.remove(key.borrow()) {
            let mut inner = item.write();

            if inner.prev.is_none() && inner.next.is_none() {
                // there was only one item and now the cache is empty
                state.last = None;
                state.first = None;
            } else if inner.prev.is_none() {
                // the last item has been removed
                state.last = inner.next.clone();

                let next_key = inner.next.as_ref().expect("next key");
                let mut next = state.cache.get(&*next_key).expect("next item").write();

                mem::swap(&mut next.prev, &mut inner.prev);
            } else if inner.next.is_none() {
                // the first item has been removed
                state.first = inner.prev.clone();
                let prev_key = inner.prev.as_ref().expect("previous key");
                let mut prev = state.cache.get(prev_key).expect("previous item").write();

                mem::swap(&mut prev.next, &mut inner.next);
            } else {
                // an item in the middle has been removed
                let prev_key = inner.prev.as_ref().expect("previous key");
                let mut prev = state.cache.get(prev_key).expect("previous item").write();

                let next_key = inner.next.as_ref().expect("next key");
                let mut next = state.cache.get(&*next_key).expect("next item").write();

                mem::swap(&mut next.prev, &mut inner.prev);
                mem::swap(&mut prev.next, &mut inner.next);
            }

            true
        } else {
            false
        }
    }

    /// Iterate over the keys in the cache, beginning with the least-frequently used.
    ///
    /// Calling `insert` or `remove` while iterating will result in a deadlock.
    pub fn iter(&self) -> Iter<K> {
        let state = self.state.read().expect("LFU cache");
        let current = state.last.clone();
        Iter { state, current }
    }
}

pub struct Iter<'a, K> {
    state: RwLockReadGuard<'a, State<K>>,
    current: Option<K>,
}

impl<'a, K: Clone + Eq + Hash> Iterator for Iter<'a, K> {
    type Item = K;

    fn next(&mut self) -> Option<Self::Item> {
        if let Some(key) = &mut self.current {
            let item = self.state.cache.get(key).expect("LFU cache item");
            let mut next = item.read().next.clone();
            mem::swap(&mut self.current, &mut next);
            next
        } else {
            None
        }
    }
}

#[cfg(test)]
mod tests {
    use std::fmt;

    use rand::{thread_rng, Rng};

    use super::*;

    #[allow(dead_code)]
    fn print_debug<K: fmt::Display + Clone + Eq + Hash>(cache: &LFUCache<K>) {
        let state = cache.state.read().expect("LFU cache state");

        let mut next = state.last.clone();
        while let Some(next_key) = next {
            let item = state.cache.get(&next_key).expect("item").read();

            if let Some(prev_key) = item.prev.as_ref() {
                print!("{}-", prev_key);
            }

            next = item.next.clone();
            if let Some(next_key) = &next {
                print!("-{}", next_key);
            }

            print!(" ");
        }

        println!();
    }

    fn validate<K: fmt::Debug + Clone + Eq + Hash>(cache: &LFUCache<K>) {
        let state = cache.state.read().expect("LFU cache state");

        if state.cache.is_empty() {
            assert!(state.first.is_none());
            assert!(state.last.is_none());
        } else {
            let first_key = state.first.as_ref().expect("first key");
            let first = state.cache.get(first_key).expect("first item").read();

            assert!(first.next.is_none());

            let last_key = state.last.as_ref().expect("last key");
            let last = state.cache.get(last_key).expect("last item").read();
            assert!(last.prev.is_none());
        }

        let mut last = None;
        let mut next = state.last.clone();
        while let Some(key) = next {
            let item = state.cache.get(&key).expect("item").read();

            if let Some(last_key) = &last {
                let prev_key = item.prev.as_ref().expect("previous key");
                assert_eq!(last_key, prev_key);
            }

            last = Some(key);
            next = item.next.clone();
        }
    }

    #[test]
    fn test_order() {
        let cache = LFUCache::new();
        let expected: Vec<i32> = (0..10).collect();

        for i in expected.iter().rev() {
            cache.insert(i);
        }

        let mut actual = Vec::with_capacity(expected.len());
        for i in cache.iter() {
            actual.push(*i);
        }

        assert_eq!(actual, expected)
    }

    #[test]
    fn test_access() {
        let mut cache = LFUCache::new();

        let mut rng = thread_rng();
        for _ in 0..100_000 {
            let i: i32 = rng.gen_range(0..10);
            cache.insert(i);
            validate(&mut cache);

            let i: i32 = rng.gen_range(0..10);
            cache.remove(&i);
            validate(&mut cache);

            let mut size = 0;
            for _ in cache.iter() {
                size += 1;
            }

            assert_eq!(cache.len(), size);
        }
    }
}