1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
use std::cmp::min;
use std::io::{self, Read};
use std::mem::size_of;

#[cfg(not(target_arch = "aarch64"))]
use byte_slice_cast::AsSliceOf;

use byte_slice_cast::AsByteSlice;

/// The number of Frs per Block.
const NUM_FRS_PER_BLOCK: usize = 4;
/// The amount of bits in an Fr when not padded.
const IN_BITS_FR: usize = 254;
/// The amount of bits in an Fr when padded.
const OUT_BITS_FR: usize = 256;

const NUM_BYTES_IN_BLOCK: usize = NUM_FRS_PER_BLOCK * IN_BITS_FR / 8;
const NUM_BYTES_OUT_BLOCK: usize = NUM_FRS_PER_BLOCK * OUT_BITS_FR / 8;

const NUM_U128S_PER_BLOCK: usize = NUM_BYTES_OUT_BLOCK / size_of::<u128>();

const MASK_SKIP_HIGH_2: u128 = 0b0011_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111;

#[repr(align(16))]
struct AlignedBuffer([u8; NUM_BYTES_IN_BLOCK + 1]);

/// An `io::Reader` that converts unpadded input into valid `Fr32` padded output.
pub struct Fr32Reader<R> {
    /// The source being padded.
    source: R,
    /// Currently read block.
    /// This is padded to 128 bytes to allow reading all values as `u128`s, but only the first
    /// 127 bytes are ever valid.
    in_buffer: AlignedBuffer,
    /// Currently writing out block.
    out_buffer: [u128; NUM_U128S_PER_BLOCK],
    /// The current offset into the `out_buffer` in bytes.
    out_offset: usize,
    /// How many `Fr32`s are available in the `out_buffer`.
    available_frs: usize,
    /// Are we done reading?
    done: bool,
}

macro_rules! process_fr {
    (
        $in_buffer:expr,
        $out0:expr,
        $out1:expr,
        $bit_offset:expr
    ) => {{
        $out0 = $in_buffer[0] >> 128 - $bit_offset;
        $out0 |= $in_buffer[1] << $bit_offset;
        $out1 = $in_buffer[1] >> 128 - $bit_offset;
        $out1 |= $in_buffer[2] << $bit_offset;
        $out1 &= MASK_SKIP_HIGH_2; // zero high 2 bits
    }};
}

impl<R: Read> Fr32Reader<R> {
    pub fn new(source: R) -> Self {
        Fr32Reader {
            source,
            in_buffer: AlignedBuffer([0; NUM_BYTES_IN_BLOCK + 1]),
            out_buffer: [0; NUM_U128S_PER_BLOCK],
            out_offset: 0,
            available_frs: 0,
            done: false,
        }
    }

    /// Processes a single block in in_buffer, writing the result to out_buffer.
    fn process_block(&mut self) {
        let in_buffer: &[u128] = {
            #[cfg(target_arch = "aarch64")]
            // Safety: This is safe because the struct/data is aligned on
            // a 16 byte boundary and can therefore be casted from u128
            // to u8 without alignment safety issues.
            unsafe {
                &mut (*(&self.in_buffer.0 as *const [u8] as *mut [u128]))
            }
            #[cfg(not(target_arch = "aarch64"))]
            self.in_buffer.0.as_slice_of::<u128>().unwrap()
        };
        let out = &mut self.out_buffer;

        // 0..254
        {
            out[0] = in_buffer[0];
            out[1] = in_buffer[1] & MASK_SKIP_HIGH_2;
        }
        // 254..508
        process_fr!(&in_buffer[1..], out[2], out[3], 2);
        // 508..762
        process_fr!(&in_buffer[3..], out[4], out[5], 4);
        // 762..1016
        process_fr!(&in_buffer[5..], out[6], out[7], 6);

        // Reset buffer offset.
        self.out_offset = 0;
    }

    fn fill_in_buffer(&mut self) -> io::Result<usize> {
        let mut bytes_read = 0;
        let mut buf = &mut self.in_buffer.0[..NUM_BYTES_IN_BLOCK];

        while !buf.is_empty() {
            match self.source.read(buf) {
                Ok(0) => {
                    break;
                }
                Ok(n) => {
                    buf = &mut buf[n..];
                    bytes_read += n;
                }
                Err(ref e) if e.kind() == io::ErrorKind::Interrupted => {}
                Err(e) => return Err(e),
            }
        }

        // Clear unfilled memory.
        for val in &mut self.in_buffer.0[bytes_read..NUM_BYTES_IN_BLOCK] {
            *val = 0;
        }

        Ok(bytes_read)
    }
}

/// Division of x by y, rounding up.
/// x must be > 0
#[inline]
const fn div_ceil(x: usize, y: usize) -> usize {
    1 + ((x - 1) / y)
}

impl<R: Read> Read for Fr32Reader<R> {
    fn read(&mut self, target: &mut [u8]) -> io::Result<usize> {
        if self.done || target.is_empty() {
            return Ok(0);
        }

        // The number of bytes already read and written into `target`.
        let mut bytes_read = 0;
        // The number of bytes to read.
        let bytes_to_read = target.len();

        while bytes_read < bytes_to_read {
            // Load and process the next block, if no Frs are available anymore.
            if self.available_frs == 0 {
                let bytes_read = self.fill_in_buffer()?;

                // All data was read from the source, no new data in the buffer.
                if bytes_read == 0 {
                    self.done = true;
                    break;
                }

                self.process_block();

                // Update state of how many new Frs are now available.
                self.available_frs = div_ceil(bytes_read * 8, IN_BITS_FR);
            }

            // Write out as many Frs as available and requested
            {
                let available_bytes = self.available_frs * (OUT_BITS_FR / 8);

                let target_start = bytes_read;
                let target_end = min(target_start + available_bytes, bytes_to_read);
                let len = target_end - target_start;

                let out_start = self.out_offset;
                let out_end = out_start + len;

                target[target_start..target_end]
                    .copy_from_slice(&self.out_buffer.as_byte_slice()[out_start..out_end]);
                bytes_read += len;
                self.out_offset += len;
                self.available_frs -= div_ceil(len * 8, OUT_BITS_FR);
            }
        }

        Ok(bytes_read)
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    use std::io::Cursor;

    use bitvec::{order::Lsb0 as LittleEndian, vec::BitVec};
    use itertools::Itertools;
    use pretty_assertions::assert_eq;
    use rand::random;

    use crate::bytes_into_fr;

    const DATA_BITS: u64 = 254;
    const TARGET_BITS: u64 = 256;

    #[test]
    fn test_simple_short() {
        // Source is shorter than 1 padding cycle.
        let data = vec![3u8; 30];
        let mut reader = Fr32Reader::new(Cursor::new(&data));
        let mut padded = Vec::new();
        reader
            .read_to_end(&mut padded)
            .expect("in-memory read failed");
        assert_eq!(padded.len(), 32);
        assert_eq!(&data[..], &padded[..30]);

        assert_eq!(padded.into_boxed_slice(), bit_vec_padding(data));
    }

    #[test]
    fn test_simple_single() {
        let data = vec![255u8; 32];
        let mut padded = Vec::new();
        let mut reader = Fr32Reader::new(Cursor::new(&data));
        reader
            .read_to_end(&mut padded)
            .expect("in-memory read failed");

        assert_eq!(&padded[0..31], &data[0..31]);
        assert_eq!(padded[31], 0b0011_1111);
        assert_eq!(padded[32], 0b0000_0011);
        assert_eq!(padded.len(), 64);
        let bv = bit_vec_padding(data);
        assert_eq!(bv.len(), 64);
        assert_eq!(padded.into_boxed_slice(), bv);
    }

    #[test]
    fn test_simple_127() {
        let data = vec![255u8; 127];
        let mut padded = Vec::new();
        let mut reader = Fr32Reader::new(Cursor::new(&data));
        reader
            .read_to_end(&mut padded)
            .expect("in-memory read failed");

        assert_eq!(&padded[0..31], &data[0..31]);
        assert_eq!(padded[31], 0b0011_1111);
        assert_eq!(padded[32], 0b1111_1111);

        assert_eq!(padded.len(), 128);

        assert_eq!(padded.into_boxed_slice(), bit_vec_padding(data));
    }

    #[test]
    fn test_chained_byte_source() {
        let random_bytes: Vec<u8> = (0..127).map(|_| random::<u8>()).collect();

        // read 127 bytes from a non-chained source
        let output_x = {
            let input_x = Cursor::new(random_bytes.clone());

            let mut reader = Fr32Reader::new(input_x);
            let mut buf_x = Vec::new();
            reader.read_to_end(&mut buf_x).expect("could not seek");
            buf_x
        };

        for n in 1..127 {
            let random_bytes = random_bytes.clone();

            // read 127 bytes from a n-byte buffer and then the rest
            let output_y = {
                let input_y =
                    Cursor::new(random_bytes.iter().take(n).cloned().collect::<Vec<u8>>()).chain(
                        Cursor::new(random_bytes.iter().skip(n).cloned().collect::<Vec<u8>>()),
                    );

                let mut reader = Fr32Reader::new(input_y);
                let mut buf_y = Vec::new();
                reader.read_to_end(&mut buf_y).expect("could not seek");

                buf_y
            };

            assert_eq!(&output_x, &output_y, "should have written same bytes");
            assert_eq!(
                output_x.clone().into_boxed_slice(),
                bit_vec_padding(random_bytes)
            );
        }
    }

    #[test]
    fn test_full() {
        let data = vec![255u8; 127];

        let mut buf = Vec::new();
        let mut reader = Fr32Reader::new(Cursor::new(&data));
        reader.read_to_end(&mut buf).expect("in-memory read failed");

        assert_eq!(buf.clone().into_boxed_slice(), bit_vec_padding(data));
        validate_fr32(&buf);
    }

    #[test]
    #[ignore]
    fn test_long() {
        use rand::{thread_rng, RngCore};

        let mut rng = thread_rng();
        for i in 1..100 {
            for j in 1..50 {
                let mut data = vec![0u8; i * j];
                rng.fill_bytes(&mut data);

                let mut buf = Vec::new();
                let mut reader = Fr32Reader::new(Cursor::new(&data));
                reader.read_to_end(&mut buf).expect("in-memory read failed");

                assert_eq!(
                    buf.into_boxed_slice(),
                    bit_vec_padding(data),
                    "{} - {}",
                    i,
                    j
                );
            }
        }
    }

    fn bit_vec_padding(raw_data: Vec<u8>) -> Box<[u8]> {
        let mut padded_data: BitVec<LittleEndian, u8> = BitVec::new();
        let raw_data: BitVec<LittleEndian, u8> = BitVec::from(raw_data);

        for data_unit in raw_data.into_iter().chunks(DATA_BITS as usize).into_iter() {
            padded_data.extend(data_unit);

            // To avoid reconverting the iterator, we deduce if we need the padding
            // by the length of `padded_data`: a full data unit would not leave the
            // padded layout aligned (it would leave it unaligned by just `pad_bits()`).
            if padded_data.len() % 8 != 0 {
                for _ in 0..(TARGET_BITS - DATA_BITS) {
                    padded_data.push(false);
                }
            }
        }

        while padded_data.len() % (TARGET_BITS as usize) != 0 {
            padded_data.push(false);
        }

        padded_data.into_boxed_slice()
    }

    fn validate_fr32(bytes: &[u8]) {
        let chunks = (bytes.len() as f64 / 32_f64).ceil() as usize;
        for (i, chunk) in bytes.chunks(32).enumerate() {
            let _ = bytes_into_fr(chunk).unwrap_or_else(|_| {
                panic!(
                    "chunk {}/{} cannot be converted to valid Fr: {:?}",
                    i + 1,
                    chunks,
                    chunk
                )
            });
        }
    }

    // raw data stream of increasing values and specific
    // outliers (0xFF, 9), check the content of the raw data encoded (with
    // different alignments) in the padded layouts.
    #[test]
    fn test_exotic() {
        let mut source = vec![
            1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
            25, 26, 27, 28, 29, 30, 31, 0xff, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
            16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 0xff, 9, 9,
        ];
        source.extend(vec![9, 0xff]);

        let mut buf = Vec::new();
        let mut reader = Fr32Reader::new(Cursor::new(&source));
        reader.read_to_end(&mut buf).expect("in-memory read failed");

        for (i, &byte) in buf.iter().enumerate().take(31) {
            assert_eq!(byte, i as u8 + 1);
        }
        assert_eq!(buf[31], 63); // Six least significant bits of 0xff
        assert_eq!(buf[32], (1 << 2) | 0b11); // 7
        for (i, &byte) in buf.iter().enumerate().skip(33).take(30) {
            assert_eq!(byte, (i as u8 - 31) << 2);
        }
        assert_eq!(buf[63], (0x0f << 2)); // 4-bits of ones, half of 0xff, shifted by two, followed by two bits of 0-padding.
        assert_eq!(buf[64], 0x0f | 9 << 4); // The last half of 0xff, 'followed' by 9.
        assert_eq!(buf[65], 9 << 4); // A shifted 9.
        assert_eq!(buf[66], 9 << 4); // Another.
        assert_eq!(buf[67], 0xf0); // The final 0xff is split into two bytes. Here is the first half.
        assert_eq!(buf[68], 0x0f); // And here is the second.

        assert_eq!(buf.into_boxed_slice(), bit_vec_padding(source));
    }
}