
A Functional Embedding of Terms in a Spatial Hierarchy

Alex Grabanski∗

May 10, 2021

Abstract

Motivated by the problem of program induction (learning of
a computer program from data), we describe an incremental
inference routine to derive embeddings of terms in a simply-
typed combinatory calculus as probability distributions over
finite-dimensional vector spaces. Our method assigns a space
of embeddings to every type of the underlying language, and
assigns an embedding to every term which has been evaluated
by the interpreter. As the interpreter is issued commands
from a down-stream task, these term embeddings are kept
updated in such a way that they reflect the best-available
knowledge about term behavior. To do so, we propose novel
distributional inference routines for random-feature kernel re-
gresssors situated in a hierarchy of typed functions. Finally,
we discuss ways that supervised, cumulative, multi-task, and
reinforcement learning could potentially benefit from the pro-
posed framework.

1 Introduction

The problem of inductive reasoning, or reasoning about hy-
potheses from data, is the central problem of machine learn-
ing. While many modern machine learning techniques typi-
cally restrict the collection of hypotheses to well-defined and
manageable classes, in the spirit of radicalism, we choose in-
stead to jump back to the 1964 theory Ray Solomonoff ad-
vanced about induction [15], which was fundamentally a pro-
cess of induction over computer programs. In some sense,
this is the most general setting for the problem of induction
in machine learning, since the hypothesis class of computer
programs is the most general class of hypotheses expressible
by machine. Unfortunately, induction over the space of all

∗e-mail: ajg137@case.edu

programs is not computable. In fact, this is incredibly unfor-
tunate, since under the definition of ”artificial general intel-
ligence” (”AGI”) adopted by AIXI [5], we only need optimal
inductive inference to achieve provably-optimal AGI. While
approximations to the conceptual process of Bayesian infer-
ence over all computer programs have been previously ad-
vanced, such as the one in AIXI-tl [5], they have exhibited
very poor performance to date.

Motivated by this problem, and by the utility of embed-
dings for dealing with otherwise-unwieldy objects such as
natural-language words in machine learning, we devise a
method to embed the terms of a simply-typed combinatory
calculus into separate spaces for each type. However, in-
stead of simple vector embeddings, we embed functional terms
as probability distributions over vectors in the embedding
space. In this way, we hope to provide an immensely prac-
tical Bayesian inference method over program terms which
is not only computable, but also has a very intuitive spatial
structure which is readily consumed by down-stream tasks.

2 Prior Research

While what we will describe in this paper does not involve any
kind of process for program search, since we leave that open
to future developments, the closest area we can draw a refer-
ence point to is that of program synthesis. A good high-level
survey of this area is given in ([4]). In particular, the sub-field
of neural program synthesis has some relatively recent works
[12] [10] which focus on the compositionality of programs and
program embeddings using neural-network based encoders as
part of their gradient-based optimization pipeline to derive
programs from examples. However, unlike neural-network-
based frameworks such as AlphaNPI [12], our framework for
deriving embeddings is not based on interpretation in an im-
perative language, but instead a typed combinatory calculus,

1

mailto:ajg137@case.edu

which we would expect to have better compositional proper-
ties. In addition, unlike the aforementioned neural program
synthesis approaches, we do not require any gradients in our
derivation of embeddings, which means that we are free to
use an actual interpreter instead of a differentiable surrogate.

Even closer, very recently, ([1]) proposed a neural-network-
based framework for gradually growing and abstracting a li-
brary of functional programs in a multi-task learning environ-
ment. However, unlike the approach here, they do not at any
point generate embeddings for program terms, but instead, a
discriminative neural-network model on programs which en-
codes how likely they are to solve the task at hand.

Another research area which is tangentially related is that
of neural architecture search, a survey of which is provided
in ([16]). In neural architecture search, building-blocks of
neural networks are composed to attempt to achieve optimal
architecture, which is quite similar to the task of composing
a program from combinators, with the caveat that neural ar-
chitecture search is intended to run before a full optimization
over all parameters in the network. While this research area is
largely divergent from what we consider here, we do note that
[7] did consider a Bayesian Optimization framework for neu-
ral architecture search which leveraged Gaussian Processes,
which we also do here. However, the internal representation
in their framework differs radically from the one we are about
to present, as their representation is not compositional in na-
ture.

3 Types, Terms, and Interpreter

We now describe the simple combinatory source language
which we will derive term embeddings for.

3.1 Types

The combinatory language we consider only has two broad
categories of types: vector types, and function types.

3.1.1 Vector Types

We suppose that there is some finite set V of vector types, and
an associated mapping dim : V → N from vector types to their
dimensionality. Every vector type V ∈ V with dim(V) = n
conceptually may be taken to correspond to some labeled,
not-necessarily-unique copy of Rn.

While the restriction of primitive types to finite-
dimensional vector spaces rules out a large collection of se-
quence types (e.g: Strings, arbitrary-length Lists), it notably
allows representation of many of the data formats which are
found commonly in ML literature (e.g: spatial vectors, im-
ages, voxel bitmaps, word embeddings, etc.)

3.1.2 Function Types

In order to represent the types of mappings between cer-
tain types, we also suppose that there is some finite set
F of function types, with an associated one-to-one mapping
sig : F → U × U , where U = F ∪ V is the universe of types,
such that the directed graph with nodes in U and edges for
every F ∈ F from F to π1(sig(F)) and from F to π2(sig(F))
has no cycles. If sig(F) = (A,B), we call A the domain of F ,
and B the codomain, and in light of the injectivity of sig, we
will frequently write F = A→ B for the function type F .

While the requirement that the set of function types is a
finite set may seem restrictive at first, it’s important to note
that in actual practice, human programmers rarely use func-
tions with high arity nor higher-order functions with overly-
complex functional arguments. In practice, this means that
in any given language, we could restrict the nesting of the
function type constructor to a sufficiently large finite value
and lose absolutely nothing of practical import. Since our
language has only a finite number of primitive types, such a
nesting restriction would be sufficient to guarantee that F is
a finite set.

3.2 Terms

The terms of our simple combinatory language largely cor-
respond to the intuitive descriptions of types which we have
given previously. We employ the common notation t : T for
denoting that the term t belongs to the type T .

3.2.1 Vector Terms

For every vector type V ∈ V, and every v ∈ Rn, where n =
dim(V), vV : V .

3.2.2 Primitive Function Terms

For every function type F ∈ F for which F = A1 → (A2 →
(...Ak → B)...), we suppose that there is some finite set PF of
primitive function terms for which every f ∈ PF is such that

2

f : F , and for each such f , there is a corresponding effective
procedure which maps tuples of terms in A1 × A2 × ...Ak to
terms of B within finite time after each time the procedure is
invoked. We do not demand that the corresponding procedure
for f is a function in the mathematical sense, as we intend to
explicitly allow mappings which incorporate external sources
of randomness. In this situation, we say that f is a primitive
with arity k. When considering particular instances of invo-
cations of f on tuples of terms in A1 × A2 × ...Ak, we will
write f(a1, a2, ...ak) b for an invocation of the procedure
for f on a1 : A1, a2 : A2... ak : Ak which yielded b : B.

3.2.3 Partially-Applied Function Terms

In addition to primitive function terms, for every primitive
function term f as specified previously, every 0 < n < k
and every collection of terms a1 : A1, a2 : A2... an :
An, we allow for a partially-applied function term, denoted
PartiallyApplied(f, a1, ...an) : An+1 → (An+2 → (...Ak →
B)...).

3.3 Evaluation Mapping

For every function term g : G = X → B, and every x : X, we
define the evaluation mapping eval(g, x) by:

• Case: g is a primitive function term
7→ PartiallyApplied(g, x).

• Case: g is PartiallyApplied(f, a1, ...an)
for arity-k > n+ 1 primitive function term f
7→ PartiallyApplied(g, a1, ...an, x)

• Case: g is PartiallyApplied(f, a1, ...an)
for arity-k = n+ 1 primitive function term f
7→ b in some freshly-obtained f(a1, a2, ...an, x) b.

3.4 Interpreter

With the definitions of the constructs of the language given,
we can now describe the operation of the interpreter and its
interface, as exposed to downstream tasks.

In our interpreter, the unique terms of functional types will
be assigned their own address for long-term storage. Upon ini-
tialization, only the primitive function terms will be assigned
addresses, but new addresses will be incrementally assigned
as new partially-applied terms are derived from evaluations.

Vector terms, in contrast, are never assigned addresses, and
simply exist inline as arrays of floating-point values. To be
able to refer to both situations under the same framework, we
say that a term reference is either the address of a function
term, or a bare array of floating-point values representing a
vector term.

We only expose a single mechanism to interact with the
interpreter in downstream tasks: Evaluating a function f :
X → Y corresponding to a given address on an argument
x : X for a given term reference, and returning a resulting
term reference to f(x) to the downstream task. In addition,
as a side-effect of doing this, if f(x) is a function term which
does not already have an address, we allocate space for it
and assign it to a new address. During the operation of the
interpreter, we also keep track of the result of every evaluation
for later use in the embedding-derivation process.

Although this mechanism for interacting with the inter-
preter is extremely minimal, it still allows the evaluation of
arbitrarily-nested applications of terms to terms, since the
code invoking the interpreter could take an arbitrary expres-
sion tree and evaluate it using the strict evaluation order, with
intermediate expressions always represented by their term ref-
erences.

4 Term Embeddings

We are now ready to discuss the embeddings associated with
each type of the language. Recall that an embedding is a map-
ping from objects of some class to a finite vector space, such
that similar objects map to vectors which are close in norm.
The notion of similarity we intend to adopt here is one of
operational similarity – namely, supposing that all functions
in the language are suitably continuous, we can declare two
terms of the same type as being similar if most expressions
involving the two terms evaluate to similar results. In the
particular example of vector types, to satisfy this demand,
we could simply choose any arbitrary continuous map from
the dimensionality of the vector type to some target dimen-
sion to be our embedding map, including the possibility of
simply choosing the identity mapping, as we do in the sequel.

However, a mechanism for deriving embeddings of function
terms is far less obvious. We can naturally suppose that we
want function embeddings to be derived from mappings from
input embeddings to output embeddings, but function spaces
on real vector spaces are inherently infinite-dimensional. We

3

want the embeddings of functions to be finite-dimensional.
To get around this issue, we could try to use the fashion-
able approach of neural networks, and pick the embeddings
of functions to be the parameters of their corresponding neu-
ral networks, assuming that we fix some network topology.
However, this approach will not result in true embeddings,
since it’s common in practice to see neural networks trained
on the same data which nevertheless wind up with radically
differing parameters. Ideally, the representation we adopt for
functions should have a single unique best-fit embedding for
a given collection of observed data-points.

We can achieve these desiredata straightforwardly by
adopting linear regression on feature-mapped input, output
pairs as the mechanism for deriving our function embeddings.
By first non-linearly mapping inputs to a larger feature space
before performing a linear regression, we can effectively ap-
proximate kernel regression using the well-known method of
random features [11]. To this aim, our reference implementa-
tion supports sketched linear features, randomized quadratic
features [9], and Random Fourier Features [11].

In spite of the elegance of this approach, we run into an
immediate issue when considering embeddings of higher-order
and curried multiple-argument function types. In the above
proposal, if f ∈ N is the number of random features on the
input embedding space, and d ∈ N is the dimensionality of
the output embedding space, then the dimensionality of the
associated function space will be f × d. If the output space
is in fact another function space, perhaps even a function
space with a function-typed output, or if the number of input
features is taken to be proportional to the dimensionality of
the input embeddings, and we perform a similar nesting for
the input space, we reach a regime where the dimensionality
of the embedding space grows exponentially with the number
of ”→” type-constructors in the type, which quickly leads to
intractability.

To resolve the issue of exponentially-growing dimensional-
ity of function embedding spaces with the number of ”→” type
constructors, we first pose a hypothesis that the collection of
functions of a given type that are of practical use do not span
the full f × d-dimensional space that they embed to, and in
fact lie almost entirely within some smaller-dimensioned sub-
space. Our intuitive reasoning for why this could be expected
to be the case is that typically, as the arity or the order of
functions increase, the expressivity of the underlying opera-
tion also increases, meaning that far fewer such functions are
needed in practical programming compared to their lower-

order and lower-arity counterparts. If this hypothesis is true,
then we should still be able to maintain a faithful representa-
tion of the embeddings of functions by passing them through a
random projection of an appropriate target dimension, while
substantially reducing the dimensionality of the derived em-
beddings.

In light of the previous observations, and the fact that real-
world data-types in programming languages have substantial
diversity in their representation and form, we proceed by es-
tablishing the following framework of associated spaces de-
fined for each type of the language:

• Base Space: For a vector type V , the base space is simply
Rd, where dim(V) = d. For a function type F = A→ B,
the base space is Rf×d, where f = dimfeature(A) is
the dimensionality of the feature space of A, and d is
the dimensionality of the compressed space of B. The
dimensionality of the base space of a type T is denoted
dimbase(T).

• Compressed Space: For a vector type V , the compressed
space is identical to the base space. For a function
type F , the compressed space is some space Rc where
c ≤ dimbase(F) = d. For any such function type F ,
we associate a (fixed, a priori) mapping called the pro-
jection mapping for the function type, which is some
orthonormal linear map ρF : Rd → Rc. The dimen-
sionality of the compressed space of a type T is denoted
dimcompressed(T).

• Feature Space: For a type T , the feature space is a copy of
Rf , for f = dimfeature(T) the number of features for T .
For any such type T , we associate a (fixed, a priori) map-
ping on T ’s compressed space called the feature mapping
for the type, which is an arbitrary, potentially non-linear
mapping φT : Rc → Rf , where c = dimcompressed(T).

Equipped with these definitions, we can feel more confi-
dent in the approach of performing featurize-mapped linear
regression for deriving embeddings of function types. How-
ever, simply representing the embedding of a function by the
maximum-likelihood ordinary regression model is insufficient
for our purposes upon further reflection. In particular, the
proposed model above takes on a recursive character in the
case where F = X → Y and either X or Y are themselves
function types. Since estimation of function embeddings is
data-dependent, the accuracy of a fit at the level of F would

4

implicitly depend on the accuracy of fits at the levels of X
or Y . This motivates a consideration of the error in the best
coefficients associated with the regression, and consequently,
an extension to our previously-introduced notion of an em-
bedding.

4.1 Schmears and Extended Embeddings

To approach the problem of representing uncertainty in our
knowledge of function embeddings, we first introduce some
definitions which will greatly simplify this task.

First, a schmear is our term for the representation of [lim-
ited information about] a probability distribution by its first
two moments [mean and covariance]. In other words, an n-
dimensional schmear is a pair (µ,Σ) where µ ∈ Rn and Σ is a
n-by-n positive semi-definite real matrix. We denote the set
of all n-dimensional schmears by Sn.

With the definition of ”schmear” in hand, we can now ex-
tend our previous notion of an ”embedding” to accurately
model uncertainty. An extended embedding for the type X
into Rn is a map:

φ : X → Sn

which associates each term reference of that type to n-
dimensional schmears. Moreover, while not a requirement
of our definition, we would like our extended embeddings to
send operationally-similar terms to schmears that are ”close”
to one another. In the case of vector types, just as before,
we may very simply satisfy such a demand by simply map-
ping vectors v to schmears with zero covariance centered at v.
Once again, for function terms, however, we will need to do
substantially more work to represent the uncertainty in our
knowledge of embeddings.

4.2 Extended Embeddings for Function
Types

In line with our motivating sections above, we will use regres-
sion models to represent embeddings of function terms. How-
ever, in order to get the extended embeddings we desire, it
is necessary for us to consider full-blown Bayesian multivari-
ate regression, not just formulas for the maximum-likelihood
regression coefficients.

Recall that for the multivariate linear regression model:

y = A ∗ z + ε

for y a t-dimensional vector and z a r-dimensional vector,
where we assume that ε ∼iid N(0t×t,Σε) for noise covariance
matrix Σε, we can put a conjugate matrix-normal inverse-
Wishart prior over A and Σε [14], meaning that we suppose:

Σε ∼ IWt(V, v)

B|Σε ∼MN t,r(B,Λ
+,Σε)

Where IWt(V, v) denotes the inverse-Wishart distribution
with t × t scale matrix V and v degrees of freedom, and
MN t,r(B,Λ

+,Σε) denotes the matrix normal distribution
with t × r mean B, r × r input covariance Λ+ (for preci-
sion Λ) 1 and t× t output covariance Σε. We refer the reader
to [2] or [13] for the probability density functions and some
additional properties of these distributions. Here, we simply
emphasize the fact that if

X ∼MN t,r(M,U, V)

then
vec(X) ∼ Nt∗r(vec(M), V ⊗ U)

where vec(−) denotes vectorization of a matrix, Nn(−,−)
denotes the multivariate normal distribution parameterized
by its n-dimensional mean and n×n covariance, respectively,
and ⊗ denotes the Kronecker product.

In what follows, we will use the shorthand
MNIWt,r(B,Λ, V, v) for the matrix-normal inverse-Wishart
prior as described above. Since the mean of IWt(V, v) is
V

v−t−1 and the mean of the matrix-normal inverse-Wishart
prior is independent of the noise covariance, by an application
of the law of total covariance, we can note that if

X ∼MNIWt,r(B,Λ, V, v)

then

E[vec(X)] = B, Cov[vec(X)] =
V

v − t− 1
⊗ Λ+

As a consequence, we can now define our extended embed-
dings for function terms. All we need to do is let z = ψX(x)
in the regression model above, and assume that our cur-
rent knowledge of the regression parameters is matrix-normal

1Here and elsewhere in this paper, we opt to use the Moore-Penrose
pseudoinverse instead of the matrix inverse, because we frequently trans-
late between covariance and precision matrices which are sometimes of
deficient rank since they often originate from sums of outer products in
our inference routines.

5

inverse-Wishart distributed as above, which results in the ex-
tended embedding:

φ(f) = (Bf ,
Vf

vf − t− 1
⊗ Λ+

f)

where f : F = (X → Y), and (Bf ,Λf , Vf , vf) is the current
parameter tuple for the t× r matrix-normal inverse-Wishart
model placed on f .

5 Bayesian Updates

With our assumption of matrix-normal inverse-Wishart priors
on our models of functions, our task is now to keep these
models updated with the current best-available information
as we evaluate new term applications in our interpreter.

5.1 Data Updates

As with any typical supervised regression model, we need to
utilize information from the input/output pairings which are
provided to us in order to determine the regression coeffi-
cients. However, unlike a typical regression model, the in-
put/output pairings used in our case to update the function
type F = (X → Y) are not in general input/output pair-
ings of data points, but rather, of input/output pairings of
schmears. As a result, we cannot directly employ the typical
expressions for incremental updates to a multivariate linear
regression.

However, we can reduce this problem of ours to a form
which is expressible as weighted input/output data point up-
dates. To accomplish this, we first greatly simplify matters by
ignoring the input covariance entirely, so we are left with just
a pairing of an observed input mean and the output schmear.
Our reason for doing this is that in general, accounting for un-
certainty in inputs in a Bayesian regression framework typ-
ically adds significant complexity [2]. On the other hand,
uncertainty in outputs in a Bayesian regression framework is
relatively simple to deal with.

After ignoring the spread of the input distribution, we may
then proceed using a trick from the field of control theory to
also eliminate the need to consider the output distribution
in favor of instead considering a collection of points with the
same mean and covariance. For a given schmear (µ,Σ) ∈ Sn,
we can derive the symmetric set of 2n+ 1 sigma points [6] as:

X Y

X → Y

⇒

Figure 1: Schematic diagram for data updates, which utilize
the mean of the input schmear and the entirety of the output
schmear. In this and in the other diagrams of this paper, red
triangles will be used to indicate which distribution the up-
date(s) are being performed on, and black arrows will be used
to indicate how information is propagated for the update(s).

{µ} ∪ {µ± [
√
nΣ]i | i ∈ [0..n]}

Where [
√
nΣ]i denotes the ith column of the unique sym-

metric matrix square root of nΣ. Straightforward calculation
may be used to verify that this set of points has the same
mean and covariance as the original schmear. Consequently,
we can represent our data-point/schmear update as a collec-
tion of 2n + 1 data-point/data-point updates. In particu-
lar, if (µX ,ΣX) is our input schmear, and sY = (µY ,ΣY)
is our output schmear, we perform 2n + 1 data-point up-
dates, each with weight 1

2n+1 using the input-output pairings
{(µX , σY i) | i ∈ [0..2n + 1]}, where σY i is the ith sigma-
point derived from sY .

Now that we have reduced the problem of keeping our mod-
els updated with respect to input/output schmears to the
problem of keeping our models updated with respect to in-
put/output data-points, we may simply use the usual expres-
sions for the Bayesian update of the matrix-normal inverse-
Wishart distribution MNIW(B,Λ, V, v) with respect to ob-

6

servation of a w-weighted input-output vector pairing (z, y).

B ⇒ (BΛ + w ∗ yzT)Λ+
∗ = B∗

Λ⇒ Λ + w ∗ zzT = Λ∗

v ⇒ v + w

V ⇒ V + (B −B∗)Λ(B −B∗)T

+ w ∗ (
yzT

zT z
−B∗)zzT (

yzT

zT z
−B∗)T

Note that using the above expressions, we may also undo an
update by simply replacing w ⇒ −w. In practice, we will not
use the above formulas directly, but will instead opt to also
track the value of Λ+ across updates utilizing the Sherman-
Morrison rank-1 inverse update formula for greater computa-
tional efficiency [8].

5.2 Prior Updates

While we are now relatively well-equipped, since the
previously-described process is able to account for observed
input/output pairings resulting from evaluation of a function
application, we still have not exploited all information avail-
able to us. To see this, we will consider a worked example
involving partial application of a binary function.

Suppose that we have a function term f : X → (Y → Z)
and two terms x1, x2 : X, and we have already directed the
interpreter to evaluate f(x1) = f1 and f(x2) = f2. Fur-
thermore, suppose that we have a large collection of terms
y1, y2, ...yn : Y for which we have evaluated f1(yi) for each i,
but we have not yet evaluated f2 on anything. In this situ-
ation, if we only use the above update process, the embed-
ding of f1 will be close to the maximum-likelihood regression
model for the pairings {(yi, f1(yi)|i ∈ [1, ...n]}. On the other
hand, the embedding for f2 will be entirely determined by
the prior we adopt over regression coefficients. From these
observations, we can immediately notice a conflict: If we take
the limit as the embeddings of x1 and x2 approach each other,
there’s a sharp discontinuity in the behavior we purport to ob-
serve for f on embeddings. Fundamentally, this discontinuity
originates from the fact that the estimates of the embeddings
for f1 and f2 are not linked, despite the fact that both stem
from partial evaluation of f .

To resolve this problem at a conceptual level, we can note
that our observations of f1 and f2 will also result in a data-
based update to the embedding of f . In the situation above,

if we could only propagate the information we have gained
about f to f2 (ignoring the information stemming from the
embedding of f2 itself), we could encode the intuition that f2
should be ”close” to f1.

We follow exactly this intuition in proposing another up-
date routine which we call a prior update, since it in some
sense updates the prior knowledge we apply to partially-
evaluated functions. Moving beyond the particular example
above, consider the general scenario where f : X → Y where
Y = (Z → W) and x : X, g = f(x) : (Z → W). We want to
use the embeddings of f and x to impute an update to the
embedding of g. Conceptually, we break down this routine
into a series of steps: First, we impute a schmear in the em-
bedding space of (Z →W) which represents our best current
estimate of the schmear for the application of f applied to x,
where we modify our information about f to ignore any data
update applied to it stemming from x. Then, once we have
obtained our best-estimate schmear in the embedding space
of (Z → W), we translate this schmear into a Bayesian up-
date to perform on the matrix-normal inverse-Wishart model
for g.

X Y=(Z→W)

X → Y

apply >

Figure 2: Schematic diagram for prior updates. The embed-
ded schmear for the function and the embedded schmear for
an argument are applied to one another to impute an out-
put schmear, which is then translated into an update for the
model of the output term.

7

5.2.1 Imputing the Output Schmear

For the moment, consider the straightforward linear model
Ãz̃+ε = ỹ where Ã is t×r and further suppose that we employ
a MNIWt,r(B̃, Λ̃, Ṽ , ṽ) prior over the usual parameters and
suppose that E[z̃] = µ and Cov[z̃] = Σ. Then,

E[ỹ] = B̃µ

Cov[ỹ] = [〈Σ, Λ̃+〉F + µT Λ̃+µ]
Ṽ

ṽ − t− 1
+ B̃ΣB̃T

where 〈−,−〉F denotes the Frobenius inner product of ma-
trices. An elementary derivation of this fact is provided in
Appendix A.

While the above formulas may be used to get an output
schmear from the matrix-normal inverse-Wishart distribu-
tion and the input distribution for a linear model, we are
interested in the case of a potentially nonlinear model where
z̃ = φ(x̃) for some feature mapping φ : Rs → Rr. Once again,
we borrow a trick from the field of control theory, since from
a schmear over x̃, we may use an unscented transform [6] to
obtain an estimate of the schmear over z̃ by using a collec-
tion of sigma-points over the input distribution, transforming
them through φ, and then computing the empirical mean and
covariance of the transformed points. [TODO: diagram of the
whole process here]

By composing an unscented transform on the argument-
space schmear to obtain a feature-space schmear with the
above description of the output schmear obtained by apply-
ing a given linear model to a feature-space schmear, we are
now able to straightforwardly impute output schmears from
arbitrary term applications.

5.2.2 Updating the Output Model

For the second stage of a prior update, we need to utilize
the obtained output-space schmear over the embedding space
(Z → W) to update our information about the model w =
A ∗ φ(z) + ε, which we assume has a MNIWt,r(B,Λ, V, v)
prior over the relevant model parameters.

First, it is important to note that there is an inherent am-
biguity in the interpretation of the covariance of a schmear in
the embedding space for (Z → W) with respect to our usual
model. Fundamentally, this is due to the fact that the covari-
ance in the linear operator obtained from a matrix-normal

inverse-Wishart distribution is only expressible as a Kronecker
product of relevant input/output covariances, which is in gen-
eral invariant with respect to alterations of the relative scal-
ing of the input covariance and output covariance factors. [3].
Luckily, in our case, we may bypass this difficulty by assuming
that the schmear for the prior update carries no information
about the residual noise ε. This is a reasonable thing for us
to do, since we only can get a sense of the ”typical” size of
the residual error from data updates, not prior updates.

After adopting the assumption that we gain no infor-
mation about the noise covariance, we can note that the
MNIWt,r likelihood may be separated back into its con-
stituent matrix-normal and inverse-Wishart components, of
which we only want to update the matrix-normal component,
since the inverse-Wishart component entirely pertains to the
likelihood for the noise covariance. Recall that in our mod-
els, the matrix normal component of the likelihood is given
by MN t,r(B,Λ

+,Σε), where Σε is the noise covariance. Ig-
noring scaling factors, the log-likelihood of this distribution
is given by:

LMN (X) = −1

2
〈Σ+

ε , (X −B)Λ(X −B)T 〉F + C

for some normalizing constant C ∈ R. Now, suppose that
we also have a schmear (µ,Σ) ∈ St∗r over the space that
vec(X) belongs to. We would like to obtain a reasonable log-
likelihood function from the schmear which is amenable to
manipulation when combined with the above log-likelihood
for our pre-existing matrix-normal model. To do so, since we
are assuming that our update will yield no additional informa-
tion about the error covariance, a reasonable functional form
for such a log-likelihood is given by another matrix normal
log-likelihood:

Lschmear(X) = −1

2
〈Σ+

ε , (X −M)Λσ(X −M)T 〉F + C

for some r× r matrix Λσ which we will derive from Σ, where
vec(M) = µ and C is once again a normalizing constant.

To obtain a suitable Λσ, we simply find where V
v−t−1 ⊗Λ+

σ

is closest to Σ in the Frobenius norm. This yields the simple
expression:

Λσ =
V Σ+

T

v − t− 1

8

where ΣT is the result of re-interpreting Σ as 4-tensor laid
out in matrix form as (t× r)× (t× r) and transposing dimen-
sions to re-order as (t× t)× (r × r), which is once again laid
out in matrix form.

Once we have done this, we can convert the likelihood of
the update to a form which is not conditional on the error co-
variance by packaging it as a matrix-normal inverse-Wishart
distribution whose inverse-Wishart component is completely
non-informative. The result of doing this is the distribution
MNIWt,r(B,Λ, V, v) where:

B = M

Λ = Λσ

v = t

V = 0

Using the formulas expressed in [CITE own ref!], we note
that if we have two matrix-normal inverse-Wishart priors
MNIWt,r(B1,Λ1, V1, v1) andMNIWt,r(B2,Λ2, V2, v2) , we
may combine the information from these priors into a new
matrix-normal inverse-Wishart prior MNIWt,r(B,Λ, V, v)
using the MNIW-sum as follows:

B = (B1Λ1 +B2Λ2)Λ+

Λ = Λ1 + Λ2

v = v1 + v2 + t

V = V1 + V2 + (B1 −B)Λ1(B1 −B)T + (B2 −B)Λ2(B2 −B)T

Consequently, we may use the above formulas to incor-
porate the information from the imputed MNIW distri-
bution into the model for the output term. If we want
to later remove the information added to the model in
this way (e.g: because we have more accurate informa-
tion to apply instead), we can simply take the MNIW
distribution used in the update and add its additive in-
verse to the model parameters instead. In line with [CITE
own reference], the additive inverse of a matrix-normal
inverse-Wishart priorMNIWt,r(B+,Λ+, V+, v+) is given by
MNIWt,r(B−,Λ−, V−, v−) where:

B− = B+

Λ− = −Λ+

v− = 2t− v+
V− = −V+

5.3 Update Ordering

With our previously-described mechanisms for updating the
models for function terms with respect to data updates and
prior updates, we are now faced with the task of scheduling
these updates during the regular operation of the interpreter.
Since, for a function type X → Y where Y = Z → W , data
updates will depend on paired terms in X and Y , and prior
updates will be issued back to the terms in Y which were
outputs of the function. Consequently, there is an inherent
cyclicity in the update process. Ideally, we would deal with
this by deriving explicit expressions for the fixed point of the
update process. However, given the intricacies of the pro-
cesses we have described, it is highly unlikely that there is
such a closed-form expression for the fixed point. Instead,
we will simply settle for an update process which will gradu-
ally approach a fixed point in the large-sample limit, as the
number of interpreter-evaluated terms goes to infinity.

To do so, we first note that after each term application is
evaluated by the interpreter, we would ideally like to only up-
date those terms which need updating as a consequence of the
just-performed evaluation. To this end, we define two kinds
of passes over the structure defined by all term applications
which have been evaluated in the past.

First, we define a data update pass as a pass where we
take the newly-updated term applications from a previous
pass, and update the models for the functions. Then, we
repeatedly take the terms that were modified, and find all
term applications involving them as either the argument or
the result of an evaluation until there are no more terms to
propagate data updates for. The following is a schematic for
this pass:

For the prior updates, we also define a prior update pass as a
pass where we take all function terms modified in a previous
pass and compute prior updates on their output spaces, if
their output type is a function type. We then iterate this
until we run out of terms to propagate prior updates for. It’s
important to note that we only perform prior updates when

9

X Y Z

X→Y X→Z

(X→Y)→(X→Z)

the function embedding changes. This is necessary because
if we propagated updates whenever the argument embedding
changed, we could easily run into an infinite loop, as in the
following figure.

X X

X→X

The following figure is a schematic of the prior update pass.

In our reference implementation, after each batch of inter-
preter evaluations, we perform one data update pass followed
by one prior update pass.

X Y Z

X→Y X→Z

(X→Y)→(X→Z)

6 Conclusions and Directions for
Further Research

We have presented an incremental procedure to keep distri-
butional embeddings of terms in a simply-typed combinatory
calculus updated in a Bayesian fashion. The authors hope
that this procedure yields the inspiration necessary for an en-
tirely new class of machine-learning systems to take root.

But before discussing such potential applications, the au-
thors think it prudent to suggest extensions to the basic
framework presented in this paper. In particular, the frame-
work we have discussed is far from unique – different choices
could have been made at many steps along the way. For
instance, instead of the matrix-normal inverse-Wishart con-
jugate Bayesian models we have adopted for the functional
embeddings, a more expressive class of distributions may have
been chosen instead. For another example, instead of using
the unscented transform to propagate uncertainty through
nonlinear functions, we could have instead used a local Tay-
lor series approximation, drawn empirical samples from the
distribution instead of using sigma points, or even regularized
the estimates to a degree to reduce the risk of overconfidence
in our estimates. However, we largely consider such things to
be incremental improvements.

More intruiging to the authors is the potential for extend-
ing our framework to languages with type systems with more
expansive capabilities. A very simple, yet impactful extension
that the authors have in mind is to extend the framework to
allow for types of finite, unbounded-length sequences, such

10

as lists and strings. However, the authors also wonder if the
framework may be extended to universal types, which could
provide better generalization behavior over types, or if the
framework could be extended even further in some fashion to
allow some analogue of dependent typing.

On applications, the authors believe that the most imme-
diate task at hand is to leverage the proposed framework to
tackle supervised learning problems. In particular, the au-
thors believe that some variant of Monte Carlo Tree Search
which takes into account the probability distributions defined
by the embeddings could be a fruitful avenue in this pursuit.
Here, the benefits of the proposed framework really show,
since if supervised learning is tackled under this framework,
the nature of this framework virtually guarantees that multi-
task learning will follow soon after.

Taking a longer view, the authors are particularly inter-
ested in applications of the proposed framework to general
reinforcement learning problems. On the purely-theoretical
side, the authors ask whether there is a version of the univer-
sal artificial general intelligence procedure AIXI to the setting
we have described, of a combinatorial base language for which
the distributional information maintained over programs is
fundamentally spatial and kept in the form of embeddings
through probability distributions. On the practical side, the
authors are also curious as to whether there are any immediate
and pragmatic fusions of the proposed framework with typical
algorithms from the reinforcement learning setting. We leave
this rich area for exploration open to other daring researchers
who wish to investigate one of the most important topics of
our time leveraging the framework which we have described.

Our reference implementation in Rust is available un-
der the MIT License at https://github.com/bubble-07/

FETISH-RS.

References

[1] Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias
Sable-Meyer, Luc Cary, Lucas Morales, Luke Hewitt, Ar-
mando Solar-Lezama, and Joshua B Tenenbaum. Dream-
coder: Growing generalizable, interpretable knowledge
with wake-sleep bayesian program learning. arXiv
preprint arXiv:2006.08381, 2020.

[2] Andrew Gelman, John B Carlin, Hal S Stern, David B

Dunson, Aki Vehtari, and Donald B Rubin. Bayesian
data analysis. CRC press, 2013.

[3] Hunter Glanz and Luis Carvalho. An expectation-
maximization algorithm for the matrix normal distribu-
tion. arXiv preprint arXiv:1309.6609, 2013.

[4] Sumit Gulwani, Oleksandr Polozov, Rishabh Singh, et al.
Program synthesis. Foundations and Trends R© in Pro-
gramming Languages, 4(1-2):1–119, 2017.

[5] Marcus Hutter. A theory of universal artificial intelli-
gence based on algorithmic complexity. arXiv preprint
cs/0004001, 2000.

[6] Simon J Julier and Jeffrey K Uhlmann. New extension
of the kalman filter to nonlinear systems. In Signal pro-
cessing, sensor fusion, and target recognition VI, volume
3068, pages 182–193. International Society for Optics and
Photonics, 1997.

[7] Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schnei-
der, Barnabas Poczos, and Eric P Xing. Neural archi-
tecture search with bayesian optimisation and optimal
transport. In Advances in neural information processing
systems, pages 2016–2025, 2018.

[8] Kaare Brandt Petersen and Michael Syskind Pedersen.
The matrix cookbook, nov 2012. URL http://www2.
imm. dtu. dk/pubdb/p. php, 3274:14, 2012.

[9] Ninh Pham and Rasmus Pagh. Fast and scalable poly-
nomial kernels via explicit feature maps. In Proceedings
of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 239–247,
2013.

[10] Thomas Pierrot, Guillaume Ligner, Scott E Reed, Olivier
Sigaud, Nicolas Perrin, Alexandre Laterre, David Kas,
Karim Beguir, and Nando de Freitas. Learning compo-
sitional neural programs with recursive tree search and
planning. In Advances in Neural Information Processing
Systems, pages 14673–14683, 2019.

[11] Ali Rahimi and Benjamin Recht. Random features for
large-scale kernel machines. In Advances in neural infor-
mation processing systems, pages 1177–1184, 2008.

[12] Scott Reed and Nando De Freitas. Neural programmer-
interpreters. arXiv preprint arXiv:1511.06279, 2015.

11

https://github.com/bubble-07/FETISH-RS
https://github.com/bubble-07/FETISH-RS

[13] Peter E Rossi, Greg M Allenby, and Rob McCulloch.
Bayesian statistics and marketing. John Wiley & Sons,
2012.

[14] Stanley Sawyer. Wishart distributions and inverse-
wishart sampling. URL: www. math. wustl.
edu/sawyer/hmhandouts/Whishart. pdf, 2007.

[15] Ray J Solomonoff. A formal theory of inductive inference.
part i. Information and control, 7(1):1–22, 1964.

[16] Martin Wistuba, Ambrish Rawat, and Tejaswini Peda-
pati. A survey on neural architecture search. arXiv
preprint arXiv:1905.01392, 2019.

Appendix A Derivation for Output
Schmear Imputation

Consider the linear model Az + ε = y where A is t × r and
suppose we employ a MNIWt,r(B,Λ, V, v) prior. Suppose
further that we have an input schmear given by E[z] = µ and
Cov[z] = Σ.

First, note that using an observation we previously made
about the MNIW distribution, we can notice that:

E[vec(A)] = vec(B)

Cov[vec(A)] =
V

v − t− 1
⊗ Λ+

Through elementary manipulation [see, e.g: here], we can
see that:

Cov[Az]kl =
∑
i

∑
j

Cov[Aki, Ajl](Σij + µiµj) +BkiBljΣij

Since Cov[Aki, Ajl] = 1
v−t−1VklΛ

+
ij , we can substitute this

expression in and re-express the outer double-summation in
matrix operations to arrive at the claimed result:

Cov[Az] = [〈Σ,Λ+〉F + µTΛ+µ]
V

v − t− 1
+BΣBT

12

https://stats.stackexchange.com/questions/420032/proof-verification-joint-variance-of-the-product-of-a-random-matrix-with-a-rand

	Introduction
	Prior Research
	Types, Terms, and Interpreter
	Types
	Vector Types
	Function Types

	Terms
	Vector Terms
	Primitive Function Terms
	Partially-Applied Function Terms

	Evaluation Mapping
	Interpreter

	Term Embeddings
	Schmears and Extended Embeddings
	Extended Embeddings for Function Types

	Bayesian Updates
	Data Updates
	Prior Updates
	Imputing the Output Schmear
	Updating the Output Model

	Update Ordering

	Conclusions and Directions for Further Research
	Derivation for Output Schmear Imputation

