1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
#![cfg_attr(not(feature = "std"), no_std)]

cfg_if::cfg_if! {
    if #[cfg(feature = "std")] {
        use std::vec::Vec;
    } else {
        extern crate alloc;
        use alloc::vec::Vec;
    }
}
use core::cmp::Ordering;
use core::marker::PhantomData;
pub use merkle_cbt;
use merkle_cbt::{merkle_tree::Merge, MerkleProof, MerkleTree, CBMT};

/// Possible errors in the crate
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum Error<K> {
    /// The proof is invalid
    InvalidProof,
    /// Key already included in tree
    KeyIncluded(K),
    /// Key not coverted in proof
    KeyUnknown(K),
}

pub type H256 = [u8; 32];

/// Trait for customize hash function
pub trait Hasher {
    /// Update data into the hasher
    fn update(&mut self, data: &[u8]);
    /// Finalize the hasher and return the hash
    fn finish(self) -> H256;
}

/// The Leaf data
#[derive(Clone)]
pub struct Leaf<K, V> {
    // For sort the leaves before build range leaves
    key: K,
    // If given, the data will be hashed in RangeLeaf.hash()
    value: V,
}

impl<K, V> Leaf<K, V>
where
    K: Ord + AsRef<[u8]> + Clone,
    V: AsRef<[u8]> + Default + Clone,
{
    pub fn new(key: K, value: V) -> Self {
        Leaf { key, value }
    }
    pub fn new_with_key(key: K) -> Self {
        Self::new(key, Default::default())
    }
    pub fn key(&self) -> &K {
        &self.key
    }
    pub fn value(&self) -> &V {
        &self.value
    }

    /// Build a range leaf with next leaf
    pub fn to_range<H: Hasher + Default>(&self, next_leaf: &Self) -> RangeLeaf<K, V, H> {
        RangeLeaf::new(self.key.clone(), next_leaf.key.clone(), self.value.clone())
    }
    /// Build a range leaf with next leaf
    pub fn into_range<H: Hasher + Default>(self, next_leaf: &Self) -> RangeLeaf<K, V, H> {
        RangeLeaf::new(self.key, next_leaf.key.clone(), self.value)
    }
}

/// The range leaf is generate by leaf
pub struct RangeLeaf<K, V, H> {
    key: K,
    next_key: K,
    value: V,
    hash_type: PhantomData<H>,
}

impl<K, V, H> Clone for RangeLeaf<K, V, H>
where
    K: Ord + AsRef<[u8]> + Clone,
    V: AsRef<[u8]> + Default + Clone,
    H: Hasher + Default,
{
    fn clone(&self) -> Self {
        Self::new(self.key.clone(), self.next_key.clone(), self.value.clone())
    }
}

impl<K, V, H> RangeLeaf<K, V, H>
where
    K: Ord + AsRef<[u8]> + Clone,
    V: AsRef<[u8]> + Default + Clone,
    H: Hasher + Default,
{
    pub fn new(key: K, next_key: K, value: V) -> Self {
        RangeLeaf {
            key,
            next_key,
            value,
            hash_type: PhantomData,
        }
    }
    pub fn new_with_key_pair(key: K, next_key: K) -> Self {
        Self::new(key, next_key, Default::default())
    }
    pub fn key(&self) -> &K {
        &self.key
    }
    pub fn next_key(&self) -> &K {
        &self.next_key
    }
    pub fn value(&self) -> &V {
        &self.value
    }

    /// Check if the key is in tree
    pub fn match_either_key(&self, key: &K) -> bool {
        &self.key == key || &self.next_key == key
    }

    /// Check if the key is in range
    pub fn match_range(&self, key: &K) -> bool {
        match self.key.cmp(&self.next_key) {
            // This is nomal range
            Ordering::Less if key > &self.key && key < &self.next_key => true,
            // This is the last special range
            Ordering::Greater if key < &self.next_key || key > &self.key => true,
            // There is only one value in tree
            Ordering::Equal if key != &self.key => true,
            _ => false,
        }
    }

    /// Hash all fields by order:
    ///
    /// 1. key
    /// 2. next_key
    /// 3. value
    pub fn hash(&self) -> H256 {
        let mut hasher = H::default();
        hasher.update(self.key.as_ref());
        hasher.update(self.next_key.as_ref());
        hasher.update(self.value.as_ref());
        hasher.finish()
    }
}

/// The proof wrapped MerkleProof to verify the exclusion of some keys
pub struct ExclusionMerkleProof<M> {
    raw_proof: MerkleProof<H256, M>,
}

impl<M> ExclusionMerkleProof<M>
where
    M: Merge<Item = H256>,
{
    /// The underlying proof
    pub fn raw_proof(&self) -> &MerkleProof<H256, M> {
        &self.raw_proof
    }

    /// Verify the `keys` are all not in tree, `None` means the `leaves` is not in the tree.
    ///
    ///  * `Ok(())`                    => All keys are not in tree
    ///  * `Err(Error::InvalidProof)`  => The proof don't match the root
    ///  * `Err(Error::KeyIncluded(K))`=> Some keys are in tree
    ///  * `Err(Error::KeyUnknown(K))` => The proof is ok, but some keys not coverted in the range
    pub fn verify_exclusion<K, V, H>(
        &self,
        root: &H256,
        range_leaves: &[RangeLeaf<K, V, H>],
        keys: &[K],
    ) -> Result<(), Error<K>>
    where
        K: Ord + AsRef<[u8]> + Clone,
        V: AsRef<[u8]> + Default + Clone,
        H: Hasher + Default,
    {
        let leaf_hashes: Vec<H256> = range_leaves.iter().map(RangeLeaf::hash).collect();
        if self.raw_proof.verify(root, &leaf_hashes) {
            for key in keys {
                let mut excluded = false;
                for range_leaf in range_leaves {
                    if range_leaf.match_either_key(key) {
                        return Err(Error::KeyIncluded(key.clone()));
                    }
                    if range_leaf.match_range(key) {
                        excluded = true;
                        break;
                    }
                }
                if !excluded {
                    return Err(Error::KeyUnknown(key.clone()));
                }
            }
            Ok(())
        } else {
            Err(Error::InvalidProof)
        }
    }
}

impl<M> From<MerkleProof<H256, M>> for ExclusionMerkleProof<M> {
    fn from(raw_proof: MerkleProof<H256, M>) -> Self {
        Self { raw_proof }
    }
}
impl<M> From<ExclusionMerkleProof<M>> for MerkleProof<H256, M> {
    fn from(proof: ExclusionMerkleProof<M>) -> Self {
        proof.raw_proof
    }
}

/// A helper struct to build data structure for verifing the exclusion of keys
///
///  * range leaves
///  * merkle root
///  * merkle tree
///  * merkle proof
#[derive(Default)]
pub struct ExclusionCBMT<K, V, H, M> {
    key_type: PhantomData<K>,
    value_type: PhantomData<V>,
    hash_type: PhantomData<H>,
    merge: PhantomData<M>,
}

impl<K, V, H, M> ExclusionCBMT<K, V, H, M>
where
    K: Ord + AsRef<[u8]> + Clone,
    V: AsRef<[u8]> + Default + Clone,
    H: Hasher + Default,
    M: Merge<Item = H256>,
{
    /// Build range leaves by raw leaves
    pub fn build_range_leaves(mut raw_leaves: Vec<Leaf<K, V>>) -> Vec<RangeLeaf<K, V, H>> {
        if raw_leaves.is_empty() {
            return Vec::new();
        }
        raw_leaves.sort_unstable_by(|a, b| a.key.cmp(&b.key));
        let mut range_leaves: Vec<_> = Vec::with_capacity(raw_leaves.len());
        for window in raw_leaves.windows(2) {
            range_leaves.push(window[0].to_range(&window[1]));
        }
        range_leaves.push(raw_leaves[raw_leaves.len() - 1].to_range(&raw_leaves[0]));
        range_leaves
    }

    /// Build merkle root
    pub fn build_merkle_root(raw_leaves: &[Leaf<K, V>]) -> H256 {
        if raw_leaves.is_empty() {
            return Default::default();
        }
        let range_leaves = Self::build_range_leaves(raw_leaves.to_vec());
        let range_leaf_hashes: Vec<_> = range_leaves.iter().map(RangeLeaf::hash).collect();
        CBMT::<H256, M>::build_merkle_root(&range_leaf_hashes)
    }

    /// Build merkle tree
    pub fn build_merkle_tree(raw_leaves: Vec<Leaf<K, V>>) -> MerkleTree<H256, M> {
        let range_leaves = Self::build_range_leaves(raw_leaves.to_vec());
        let range_leaf_hashes: Vec<_> = range_leaves.iter().map(RangeLeaf::hash).collect();
        CBMT::<H256, M>::build_merkle_tree(&range_leaf_hashes)
    }

    /// Build merkle proof
    pub fn build_merkle_proof(
        raw_leaves: &[Leaf<K, V>],
        indices: &[u32],
    ) -> Option<ExclusionMerkleProof<M>> {
        Self::build_merkle_tree(raw_leaves.to_vec())
            .build_proof(indices)
            .map(Into::into)
    }
}

/// Simple empty Leaf value
pub type SimpleValue = [u8; 0];
/// Simple Leaf binded to SimpleValue
pub type SimpleLeaf<K> = Leaf<K, SimpleValue>;
/// Simple RangeLeaf binded to SimpleValue
pub type SimpleRangeLeaf<K, H> = RangeLeaf<K, SimpleValue, H>;
/// Simple ExclusionCBMT binded to SimpleValue
pub type SimpleExclusionCBMT<K, H, M> = ExclusionCBMT<K, SimpleValue, H, M>;

#[cfg(test)]
mod tests {
    use super::*;
    use blake2b_rs::{Blake2b, Blake2bBuilder};

    pub struct Blake2bHasher(Blake2b);

    const PERSONALIZATION: &[u8] = b"exclusioncbmtree";
    impl Default for Blake2bHasher {
        fn default() -> Self {
            let blake2b = Blake2bBuilder::new(32).personal(PERSONALIZATION).build();
            Blake2bHasher(blake2b)
        }
    }

    impl Hasher for Blake2bHasher {
        fn update(&mut self, data: &[u8]) {
            self.0.update(data);
        }
        fn finish(self) -> H256 {
            let mut hash = [0u8; 32];
            self.0.finalize(&mut hash);
            hash
        }
    }

    struct MergeBlake2bH256 {}

    impl Merge for MergeBlake2bH256 {
        type Item = H256;
        fn merge(left: &Self::Item, right: &Self::Item) -> Self::Item {
            let mut hasher = Blake2bHasher::default();
            hasher.update(left);
            hasher.update(right);
            hasher.finish()
        }
    }

    type StrKey = &'static str;
    type StrLeaf = SimpleLeaf<StrKey>;
    type StrRangeLeaf = SimpleRangeLeaf<StrKey, Blake2bHasher>;
    type StrExCBMT = SimpleExclusionCBMT<StrKey, Blake2bHasher, MergeBlake2bH256>;

    #[test]
    fn test_simple() {
        let all_leaves: Vec<StrLeaf> = vec!["b", "e", "g", "x"]
            .into_iter()
            .map(StrLeaf::new_with_key)
            .collect();
        let all_range_leaves = StrExCBMT::build_range_leaves(all_leaves.clone());
        // ["e", "x"] => [("e", "g"), ("x", "b")]
        let indices: Vec<u32> = vec![1, 3];
        let range_leaves: Vec<StrRangeLeaf> = indices
            .iter()
            .map(|index| all_range_leaves[*index as usize].clone())
            .collect();
        let root = StrExCBMT::build_merkle_root(&all_leaves);
        let proof: ExclusionMerkleProof<MergeBlake2bH256> =
            StrExCBMT::build_merkle_proof(&all_leaves, &indices).unwrap();

        assert_eq!(
            range_leaves
                .iter()
                .map(|l| (*l.key(), *l.next_key()))
                .collect::<Vec<_>>(),
            vec![("e", "g"), ("x", "b")]
        );
        let excluded_keys: Vec<StrKey> = vec!["f", "y", "z", "a"];
        assert!(proof
            .verify_exclusion(&root, &range_leaves, &excluded_keys)
            .is_ok());
        let excluded_keys: Vec<StrKey> = vec!["f"];
        assert!(proof
            .verify_exclusion(&root, &range_leaves, &excluded_keys)
            .is_ok());
        let excluded_keys: Vec<StrKey> = vec!["f", "y", "z", "a"];
        assert!(proof
            .verify_exclusion(&root, &range_leaves, &excluded_keys)
            .is_ok());

        // Use invalid leaves to verify the proof
        let invalid_leaves1: Vec<StrRangeLeaf> = vec![("b", "e"), ("e", "g"), ("x", "b")]
            .into_iter()
            .map(|(key, next_key)| StrRangeLeaf::new_with_key_pair(key, next_key))
            .collect();
        assert_eq!(
            proof.verify_exclusion(&root, &invalid_leaves1, &excluded_keys),
            Err(Error::InvalidProof)
        );
        let invalid_leaves2: Vec<StrRangeLeaf> = vec![("d", "g"), ("x", "b")]
            .into_iter()
            .map(|(key, next_key)| StrRangeLeaf::new_with_key_pair(key, next_key))
            .collect();
        assert_eq!(
            proof.verify_exclusion(&root, &invalid_leaves2, &excluded_keys),
            Err(Error::InvalidProof)
        );

        // "e" is in included keys
        let excluded_keys: Vec<StrKey> = vec!["e"];
        assert_eq!(
            proof.verify_exclusion(&root, &range_leaves, &excluded_keys),
            Err(Error::KeyIncluded("e"))
        );

        // "e","x" are in included keys
        let excluded_keys: Vec<StrKey> = vec!["e", "f", "x"];
        assert_eq!(
            proof.verify_exclusion(&root, &range_leaves, &excluded_keys),
            Err(Error::KeyIncluded("e"))
        );

        // "c" is not in included keys, but the proof can not verify it
        let excluded_keys: Vec<StrKey> = vec!["c"];
        assert_eq!(
            proof.verify_exclusion(&root, &range_leaves, &excluded_keys),
            Err(Error::KeyUnknown("c"))
        );
    }
}