1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//    http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use crate::{Term};
use crate::instruction;
use crate::instruction::{Instruction,Offset};
use crate::compiler;
use crate::compiler::Compiler;

// ============================================================================
// Bytecode Programs
// ============================================================================

/// Represents a sequence of zero or more bytecodes which can be
/// turned, for example, into a hex string.  Likewise, they can be
/// decompiled or further optimised.
pub struct Bytecode {
    /// The underlying bytecode sequence.
    bytecodes: Vec<Instruction>,
    /// Counts the number of labels
    labels: usize
}

impl Bytecode {
    pub fn new() -> Self {
        Bytecode{bytecodes:Vec::new(), labels:0}
    }

    pub fn push(&mut self, insn: Instruction) {
        self.bytecodes.push(insn);
    }

    /// Get access to the raw sequence of instructions.
    pub fn instructions(&self) -> &[Instruction] {
	&self.bytecodes
    }

    /// Return the number of labels in the instruction sequence thus
    /// far.
    pub fn fresh_label(&mut self) -> usize {
        let lab = self.labels;
        self.labels = self.labels + 1;
        lab
    }

    /// Translate this sequence of bytecode instructions into a
    /// sequence of raw bytes.  This can still fail in a number of
    /// ways.  For example, the target for a `PUSHL` does not match
    /// any known `JUMPEST` label; Or, the stack size is exceeded,
    /// etc.
    pub fn to_bytes(&self) -> Result<Vec<u8>,instruction::Error> {
        let offsets = self.determine_offsets();
        let mut bytes = Vec::new();
        //
        for b in &self.bytecodes {
            // Encode instruction
            b.encode(&offsets,&mut bytes)?;
        }
        // Done
        Ok(bytes)
    }

    /// Determine the offsets of all labels within the instruction
    /// sequence.  This is non-trivial because labels which are
    /// further away affect the overall size of the bytecode sequence
    /// (hence, a label can affect the offset of itself or other
    /// labels).
    fn determine_offsets(&self) -> Vec<Offset> {
        // Construct initial set of empty offsets
        let mut offsets = vec![Offset(0); self.labels];
        // Iterate to a fixpoint.
        while self.update_offsets(&mut offsets) {
            // Keep going until no more changes!
        }
        //
        offsets
    }

    /// Update the offset information, noting whether or not anything
    /// actually changed.  The key is that as we recalculate offsets
    /// we may find the width has changed.  If this happens, we have
    /// to recalculate all offsets again assuming the larger width(s).
    fn update_offsets(&self, offsets: &mut [Offset]) -> bool {
        let mut changed = false;
        let mut offset = 0u16;
        // Calculate label offsets
        for b in &self.bytecodes {
            match b {
                Instruction::JUMPDEST(lab) => {
                    // Extract old offset
                    let oldoff = offsets[*lab];
                    // Construct new offset
                    let newoff = Offset(offset);
                    // Check!
                    if oldoff != newoff {
                        // Offset has changed, but the key thing is
                        // whether or not its _width_ has changed.
                        changed |= oldoff.width() != newoff.width();
                        // Update new offset.
                        offsets[*lab] = newoff;
                    }
                }
                Instruction::PUSH(bs) => offset = offset + (bs.len() as u16),
                Instruction::PUSHL(lab) => {
                    // This time calculate a more accurate figure.
                    offset = offset + offsets[*lab].width()
                }
                _ => {}
            }
            offset = offset + 1;
        }
        //
        changed
    }
}

// ============================================================================
// Helpers
// ============================================================================

fn try_from(terms: &[Term]) -> Result<Bytecode,compiler::Error> {
    let mut bytecode = Bytecode::new();
    let mut compiler = Compiler::new(&mut bytecode);
    // Translate statements one-by-one
    for t in terms {
        compiler.translate(t)?;
    }
    // Done
    Ok(bytecode)
}

// ============================================================================
// Trait implementstions
// ============================================================================

/// Translate a sequence of IL statements into EVM bytecode, or fail
/// with an error.
impl TryFrom<&[Term]> for Bytecode {
    type Error = compiler::Error;

    fn try_from(terms: &[Term]) -> Result<Bytecode,Self::Error> {
        try_from(terms)
    }
}

/// Translate a sequence of IL statements into EVM bytecode, or fail
/// with an error.
impl<const N: usize> TryFrom<&[Term;N]> for Bytecode {
    type Error = compiler::Error;

    fn try_from(terms: &[Term;N]) -> Result<Bytecode,Self::Error> {
        try_from(terms)
    }
}

/// Try and translate a bytecode sequence into byte sequence.  This
/// can fail for a number of reasons (e.g. dangling branches, stack
/// depth exceeded, etc).
impl TryInto<Vec<u8>> for Bytecode {
    type Error = instruction::Error;

    fn try_into(self) -> Result<Vec<u8>,Self::Error> {
        self.to_bytes()
    }
}