1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
use super::super::*;

extern crate byteorder;
use self::byteorder::{ByteOrder, BigEndian, ReadBytesExt, WriteBytesExt};

use std::io;

///IEEE 802.1Q VLAN Tagging Header (can be single or double tagged).
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum VlanHeader {
    ///IEEE 802.1Q VLAN Tagging Header
    Single(SingleVlanHeader),
    ///IEEE 802.1Q double VLAN Tagging Header
    Double(DoubleVlanHeader)
}

///IEEE 802.1Q VLAN Tagging Header
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct SingleVlanHeader {
    ///A 3 bit number which refers to the IEEE 802.1p class of service and maps to the frame priority level.
    pub priority_code_point: u8,
    ///Indicate that the frame may be dropped under the presence of congestion.
    pub drop_eligible_indicator: bool,
    ///12 bits vland identifier.
    pub vlan_identifier: u16,
    ///"Tag protocol identifier": Type id of content after this header. Refer to the "EtherType" for a list of possible supported values.
    pub ether_type: u16,
}

impl SerializedSize for SingleVlanHeader {
    ///Serialized size of the header in bytes.
    const SERIALIZED_SIZE: usize = 4;
}

impl SingleVlanHeader {
    ///Read a IEEE 802.1Q VLAN tagging header
    pub fn read<T: io::Read + io::Seek + Sized >(reader: &mut T) -> Result<SingleVlanHeader, io::Error> {
        let (priority_code_point, drop_eligible_indicator, vlan_identifier) = {
            let mut buffer: [u8;2] = [0;2];
            reader.read_exact(&mut buffer)?;
            let drop_eligible_indicator = 0 != (buffer[0] & 0x10);
            let priority_code_point = buffer[0] >> 5;
            //mask and read the vlan id
            buffer[0] = buffer[0] & 0xf;
            (priority_code_point, drop_eligible_indicator, BigEndian::read_u16(&buffer))
        };

        Ok(SingleVlanHeader{
            priority_code_point: priority_code_point,
            drop_eligible_indicator: drop_eligible_indicator,
            vlan_identifier: vlan_identifier,
            ether_type: reader.read_u16::<BigEndian>()?
        })
    }

    ///Write the IEEE 802.1Q VLAN tagging header
    pub fn write<T: io::Write + Sized>(&self, writer: &mut T) -> Result<(), WriteError> {
        use ErrorField::*;
        //check value ranges
        max_check_u8(self.priority_code_point, 0x7, VlanTagPriorityCodePoint)?;
        max_check_u16(self.vlan_identifier, 0xfff, VlanTagVlanId)?;
        {
            let mut buffer: [u8;2] = [0;2];
            BigEndian::write_u16(&mut buffer, self.vlan_identifier);
            if self.drop_eligible_indicator {
                buffer[0] = buffer[0] | 0x10;
            }
            buffer[0] = buffer[0] | (self.priority_code_point << 5);
            writer.write_all(&buffer)?;
        }
        writer.write_u16::<BigEndian>(self.ether_type)?;
        Ok(())
    }
}

///IEEE 802.1Q double VLAN Tagging Header
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct DoubleVlanHeader {
    ///The outer vlan tagging header
    pub outer: SingleVlanHeader,
    ///The inner vlan tagging header
    pub inner: SingleVlanHeader
}

impl SerializedSize for DoubleVlanHeader {
    ///Serialized size of the header in bytes.
    const SERIALIZED_SIZE: usize = 8;
}

impl DoubleVlanHeader {
    ///Read a double tagging header from the given source
    pub fn read<T: io::Read + io::Seek + Sized >(reader: &mut T) -> Result<DoubleVlanHeader, ReadError> {
        let outer = SingleVlanHeader::read(reader)?;
        //check that the tagging protocol identifier is correct
        if (EtherType::VlanTaggedFrame as u16) != outer.ether_type {
            use ReadError::*;
            Err(VlanDoubleTaggingUnexpectedOuterTpid(outer.ether_type))
        } else {
            Ok(DoubleVlanHeader{
                outer: outer,
                inner: SingleVlanHeader::read(reader)?
            })
        }
    }

    ///Write the double IEEE 802.1Q VLAN tagging header
    pub fn write<T: io::Write + Sized>(&self, writer: &mut T) -> Result<(), WriteError> {
        self.outer.write(writer)?;
        self.inner.write(writer)
    }
}

impl<'a> PacketSlice<'a, SingleVlanHeader> {
    ///Creates a vlan header slice from a slice.
    pub fn from_slice(slice: &'a[u8]) -> Result<PacketSlice<'a, SingleVlanHeader>, ReadError>{
        //check length
        use std::io::ErrorKind::UnexpectedEof;
        use std::io::Error;
        use ReadError::*;
        if slice.len() < SingleVlanHeader::SERIALIZED_SIZE {
            return Err(IoError(Error::from(UnexpectedEof)));
        }

        //all done
        Ok(PacketSlice::<'a, SingleVlanHeader> {
            slice: &slice[..SingleVlanHeader::SERIALIZED_SIZE],
            phantom: std::marker::PhantomData::<SingleVlanHeader>{}
        })
    }

    ///Read the "priority_code_point" field from the slice. This is a 3 bit number which refers to the IEEE 802.1p class of service and maps to the frame priority level.
    pub fn priority_code_point(&self) -> u8 {
        self.slice[0] >> 5
    }

    ///Read the "drop_eligible_indicator" flag from the slice. Indicates that the frame may be dropped under the presence of congestion.
    pub fn drop_eligible_indicator(&self) -> bool {
        0 != (self.slice[0] & 0x10)
    }

    ///Reads the 12 bits "vland identifier" field from the slice.
    pub fn vlan_identifier(&self) -> u16 {
        let buffer = [self.slice[0] & 0xf, self.slice[1]];
        BigEndian::read_u16(&buffer)
    }

    ///Read the "Tag protocol identifier" field from the slice. Refer to the "EtherType" for a list of possible supported values.
    pub fn ether_type(&self) -> u16 {
        BigEndian::read_u16(&self.slice[2..4])
    }

    ///Decode all the fields and copy the results to a SingleVlanHeader struct
    pub fn to_header(&self) -> SingleVlanHeader {
        SingleVlanHeader {
            priority_code_point: self.priority_code_point(),
            drop_eligible_indicator: self.drop_eligible_indicator(),
            vlan_identifier: self.vlan_identifier(),
            ether_type: self.ether_type(),
        }
    }
}

impl<'a> PacketSlice<'a, DoubleVlanHeader> {
    ///Creates a double header slice from a slice.
    pub fn from_slice(slice: &'a[u8]) -> Result<PacketSlice<'a, DoubleVlanHeader>, ReadError>{
        //check length
        use std::io::ErrorKind::UnexpectedEof;
        use std::io::Error;
        use ReadError::*;
        if slice.len() < DoubleVlanHeader::SERIALIZED_SIZE {
            return Err(IoError(Error::from(UnexpectedEof)));
        }

        //all done
        Ok(PacketSlice::<'a, DoubleVlanHeader> {
            slice: &slice[..DoubleVlanHeader::SERIALIZED_SIZE],
            phantom: std::marker::PhantomData{}
        })
    }

    ///Returns a slice with the outer vlan header
    pub fn outer(&self) -> PacketSlice<'a, SingleVlanHeader> {
        PacketSlice::<'a, SingleVlanHeader> {
            slice: &self.slice[..SingleVlanHeader::SERIALIZED_SIZE],
            phantom: std::marker::PhantomData{}
        }
    }

    ///Returns a slice with the inner vlan header.
    pub fn inner(&self) -> PacketSlice<'a, SingleVlanHeader> {
        PacketSlice::<'a, SingleVlanHeader> {
            slice: &self.slice[SingleVlanHeader::SERIALIZED_SIZE..SingleVlanHeader::SERIALIZED_SIZE*2],
            phantom: std::marker::PhantomData{}
        }
    }

    ///Decode all the fields and copy the results to a DoubleVlanHeader struct
    pub fn to_header(&self) -> DoubleVlanHeader {
        DoubleVlanHeader {
            outer: self.outer().to_header(),
            inner: self.inner().to_header()
        }
    }
}