1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
//! # Numerical enumerations
//!
//! The `enumber` crate provides a mechanism for deriving a lot of useful helpers
//! for your enumerations which are sets of numbers.  Its main purpose is to
//! provide convenience implementations of a number of useful traits for your
//! enumerations automatically.
//!
//! See the [`convert`][macro@convert] macro and [`into`][macro@into]
//! macro for details, however here is a basic example:
//!
//! ```rust
//! #[enumber::convert]
//! #[repr(usize)]
//! enum Simple {
//!     Foo = 1,
//!     Bar = 2,
//! }
//!
//! use std::convert::TryFrom;
//!
//! // You can use try_from() to go from a suitable number to an instance of
//! // your enumeration.
//! assert!(matches!(Simple::try_from(1), Ok(Simple::Foo)));
//!
//! // You can convert from instances of your enumeration to a number.
//! assert_eq!(2 as usize, Simple::Bar.into());
//!
//! // You can render instances of your enumeration to strings.
//! assert_eq!(&format!("{}", Simple::Foo), "Foo");
//!
//! // And you can convert from a string to your enumeration, using the names
//! // of the enumeration items (case insensitively) or by number.  If the
//! // name or number is invalid, you'll get an error.
//!
//! use std::str::FromStr;
//! assert!(matches!(Simple::from_str("Foo"), Ok(Simple::Foo)));
//! assert!(matches!(Simple::from_str("bAr"), Ok(Simple::Bar)));
//! assert!(matches!(Simple::from_str("1"), Ok(Simple::Foo)));
//! assert!(matches!(Simple::from_str("0x02"), Ok(Simple::Bar)));
//! assert!(matches!(Simple::from_str("3"), Err(ParseSimpleError::UnknownValue(_))));
//! assert!(matches!(Simple::from_str("wibble"), Err(ParseSimpleError::UnknownName(_))));
//! ```
//!
//! The [`into`][macro@into] macro only implements `From`.  But,
//! unlike the [`convert`][macro@convert] macro, it is able to convert
//! variants with data to a value.  (It can't convert values to
//! variants, because the data is missing.)  This is helpful, for
//! instance, for converting rich error types to simple error codes at
//! an FFI boundary.
//!
//! ```rust
//! #[enumber::into]
//! #[repr(usize)]
//! enum Errors {
//!     Success = 0,
//!     #[value(0x10)] NotDefined(String),
//!     InvalidArg(String, String) = 0x20,
//!     OpNotSupported = 0x30,
//! }
//!
//! // You can convert from instances of your enumeration to a number.
//! assert_eq!(0 as usize, Errors::Success.into());
//! assert_eq!(0x10 as usize, Errors::NotDefined("a".into()).into());
//! assert_eq!(0x10 as usize, Errors::NotDefined("123".into()).into());
//! assert_eq!(0x20 as usize, Errors::InvalidArg("a".into(), "123".into()).into());
//! assert_eq!(0x30 as usize, Errors::OpNotSupported.into());
//! ```

use proc_macro::TokenStream;

use quote::{quote, ToTokens};
use syn::{
    parse_macro_input, parse_quote, Attribute, Data, DeriveInput, Error, Expr, Field, Fields,
    Ident, Type, Visibility,
};
use syn::{punctuated::Punctuated, FieldsUnnamed};
use syn::{spanned::Spanned, ExprRange};
use syn::{token::Paren, RangeLimits};

// Whether we are in enumber::Convert or enumber::Into mode.
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
enum Mode {
    Convert,
    Into,
}

fn find_repr(name: &Ident, input: &[Attribute]) -> Result<Type, Error> {
    for attr in input.iter() {
        if attr.path.is_ident("repr") {
            return attr.parse_args();
        }
    }
    Err(Error::new_spanned(name, "missing repr(SomeType) attribute"))
}

fn generate_conversions(input: DeriveInput, mode: Mode) -> Result<impl Into<TokenStream>, Error> {
    let name = &input.ident;
    let visibility = &input.vis;
    let variants = match &input.data {
        Data::Enum(data) => &data.variants,
        _ => return Err(Error::new_spanned(input, "input must be an enum")),
    };

    let mut exhaustive = input.attrs.iter().any(|a| a.path.is_ident("exhaustive"));

    let mut default_variant = None;
    let mut values: Vec<(_, _, usize)> = Vec::new();
    for (n, variant) in variants.iter().enumerate() {
        let mut value: Option<Expr> = None;
        for attr in variant.attrs.iter().filter(|a| a.path.is_ident("value")) {
            if value.is_some() {
                return Err(Error::new_spanned(attr, "only one value is permitted"));
            }
            value = Some(attr.parse_args()?);
        }

        // enum Foo {
        //     X,                 // Unit
        //     Y(String),         // Unnamed, len = 1,
        //     Z(String, String), // Unnamed, len = 2,
        // }
        match &variant.fields {
            Fields::Unit => {
                if let Some(value) = value {
                    values.push((value.clone(), value, 0));
                } else {
                    return Err(Error::new_spanned(
                        &variant.ident,
                        "variant does not have a specified value",
                    ));
                }
            }
            Fields::Unnamed(f) => {
                if let Some(value) = value {
                    values.push((value.clone(), value, f.unnamed.len()));
                } else {
                    if f.unnamed.len() != 1 {
                        return Err(Error::new_spanned(
                            &variant.ident,
                            "default variant must have single value",
                        ));
                    }
                    if variant.attrs.iter().any(|a| a.path.is_ident("default")) {
                        if default_variant.is_some() {
                            return Err(Error::new_spanned(
                                &variant.ident,
                                "an enum can only have one default variant",
                            ));
                        }
                        default_variant = Some(n);
                    } else if let Some(range) =
                        variant.attrs.iter().find(|a| a.path.is_ident("ranged"))
                    {
                        let range: ExprRange = range.parse_args()?;
                        if range.from.is_none() && range.to.is_none() {
                            return Err(Error::new_spanned(
                                range,
                                "empty ranges are not supported",
                            ));
                        }
                        let base = range
                            .from
                            .as_ref()
                            .unwrap_or_else(|| range.to.as_ref().unwrap());
                        let def: Expr = if range.from.is_none()
                            && matches!(range.limits, RangeLimits::HalfOpen(_))
                        {
                            parse_quote!(#base - 1)
                        } else {
                            parse_quote!(#base)
                        };
                        values.push((Expr::Range(range), def, f.unnamed.len()));
                    } else {
                        return Err(Error::new_spanned(
                            &variant.ident,
                            "tuple variant must have an explicit value (#[value(...)]) \
                             or be labelled default or ranged",
                        ));
                    }
                }
            }
            _ => {
                let span = variant.ident.span();
                return Err(Error::new(span, "variant with data is not supported"));
            }
        }
    }

    if let Some(n) = default_variant {
        if n != variants.len() - 1 {
            return Err(Error::new_spanned(
                &variants[n],
                "default variant must be the last one",
            ));
        }
    }

    let inttype = default_variant
        .map(|n| match &variants[n].fields {
            Fields::Unnamed(f) => Ok(f.unnamed[0].ty.clone()),
            _ => unreachable!(),
        })
        .unwrap_or_else(|| find_repr(name, &input.attrs))?;

    let inttype = match inttype {
        Type::Path(p) => p.path,
        other => {
            return Err(Error::new_spanned(
                other,
                "default type must be a simple path",
            ))
        }
    };

    let default_variant = default_variant.map(|n| {
        let name = &variants[n].ident;
        let lower_name = name.to_string().to_ascii_lowercase();
        (name, lower_name)
    });

    exhaustive |= default_variant.is_some();

    // At this point, we have a type for the enumeration and we have a default
    // variant if there is one.

    // A tuple consisting of:
    //
    //   0. The variant's name (Foo)
    //   1. The lowercased name (foo)
    //   2. The variant's value ('1').
    //   3. The variant's default value.  For ranges, this is the
    //   lower bound of the range.  For everything else it is the same
    //   as the value (#2).
    //   4. The number of fields in the variant.
    let mappings: Vec<_> = values
        .into_iter()
        .enumerate()
        .map(|(n, value)| {
            let name = &variants[n].ident;
            let lower_name = name.to_string().to_ascii_lowercase();
            (name, lower_name, value.0, value.1, value.2)
        })
        .collect();

    let mut tokens = quote! {};

    // We now have a set of mappings, so let's generate the conversion *to*
    // the type we want.  Something like:
    //
    //   impl ::std::convert::From<OpenExample> for u16
    //   {
    //       fn from(item: OpenExample) -> u16
    //       {
    //           match self {
    //               OpenExample::First => 1,
    //               OpenExample::Second => 2,
    //               OpenExample::Third => 23,
    //           }
    //       }
    //   }
    let matcharms: Vec<_> = mappings
        .iter()
        .map(|entry| {
            let ename = entry.0;
            let value = &entry.2;
            let fields = entry.4;
            if matches!(value, Expr::Range(_)) {
                quote!(
                    #name :: #ename(value) => value,
                )
            } else if fields > 0 {
                let mut f = quote!();
                for _ in 0..fields {
                    quote!(_,).to_tokens(&mut f);
                }
                quote!(
                    #name :: #ename(#f) => #value,
                )
            } else {
                quote!(
                    #name :: #ename => #value,
                )
            }
        })
        .collect();
    let defaultarm = if let Some((ename, _)) = default_variant {
        quote!(
            #name :: #ename (value) => value,
        )
    } else {
        quote!()
    };

    let t = quote! {
        impl ::std::convert::From<#name> for #inttype {
            fn from(item: #name) -> #inttype {
                match item {
                    #(#matcharms)*
                    #defaultarm
                }
            }
        }
    };
    t.to_tokens(&mut tokens);

    if mode == Mode::Convert {
        // The From or TryFrom implementation:
        //
        //   impl ::std::convert::TryFrom<u16> for OpenExample
        //   {
        //       type Error = u16;
        //       fn try_from(value : u16) -> ::std::result::Result<Self, u16>
        //       {
        //         #[deny(unreachable_patterns)]
        //         match value
        //         {
        //             1 => Ok(Self::First),
        //             2 => Ok(Self::Second),
        //             23 => Ok(Self::Third),
        //             other => Err(value),
        //         }
        //       }
        //   }
        if exhaustive {
            // It's exhaustive so we can implement From.
            let literal_arms: Vec<_> = mappings
                .iter()
                .map(|(ident, _, literal, _, _)| {
                    if matches!(literal, Expr::Range(_)) {
                        quote! {
                            value @ #literal => Self::#ident (value),
                        }
                    } else {
                        quote! {
                            #literal => Self::#ident,
                        }
                    }
                })
                .collect();
            let default_arm = if let Some((default_name, _)) = default_variant {
                quote!(other => Self :: #default_name (other),)
            } else {
                quote!()
            };

            let t = quote! {
                impl ::std::convert::From<#inttype> for #name {
                    fn from(value: #inttype) -> Self {
                        #[deny(unreachable_patterns)]
                        match value {
                            #(#literal_arms)*
                            #default_arm
                        }
                    }
                }
            };
            t.to_tokens(&mut tokens);
        } else {
            // It's not exhaustive so we implement TryFrom.
            let literal_arms: Vec<_> = mappings
                .iter()
                .map(|(ident, _, literal, _, _)| {
                    if matches!(literal, Expr::Range(_)) {
                        quote! {
                            value @ #literal => Ok(Self::#ident (value)),
                        }
                    } else {
                        quote! {
                            #literal => Ok(Self::#ident),
                        }
                    }
                })
                .collect();

            let t = quote! {
                impl ::std::convert::TryFrom<#inttype> for #name {
                    type Error = #inttype;

                    fn try_from(value: #inttype) -> ::std::result::Result<Self, #inttype> {
                        #[deny(unreachable_patterns)]
                        match value {
                            #(#literal_arms)*
                            other => Err(value),
                        }
                    }
                }
            };
            t.to_tokens(&mut tokens);
        }
    }

    // A Display implementation:
    //
    //   impl ::std::fmt::Display for OpenExample
    //   {
    //       fn fmt(&self, f: &mut::std::fmt::Formatter<'_>) -> std::fmt::Result
    //       {
    //           match self
    //           {
    //               Self::First => f.write_str("First"),
    //               Self::Second => f.write_str("Second"),
    //               Self::Third => f.write_str("Third"),
    //           }
    //       }
    //   }
    if mode == Mode::Convert {
        let matcharms: Vec<_> = mappings
            .iter()
            .map(|(i, _, lit, _, _)| {
                let istr = i.to_string();
                if matches!(lit, Expr::Range(_)) {
                    quote! {
                        Self :: #i (value) => write!(f, concat!(#istr, "({})"), value),
                    }
                } else {
                    quote! {
                        Self :: #i => f.write_str(#istr),
                    }
                }
            })
            .collect();
        let default_arm = if let Some(tokens) = default_variant.as_ref().map(|(i, _)| {
            let istr = i.to_string();
            quote!(
                Self :: #i (value) => write!(f, concat!(#istr, "({})"), value),
            )
        }) {
            tokens
        } else {
            quote!()
        };

        let t = quote! {
            impl ::std::fmt::Display for #name {
                fn fmt(&self, f: &mut ::std::fmt::Formatter<'_>) -> std::fmt::Result {
                    match self {
                        #(#matcharms)*
                        #default_arm
                    }
                }
            }
        };

        t.to_tokens(&mut tokens);
    }

    if mode == Mode::Convert {
        // A FromStr implementation:
        //
        //   #[derive(Debug)]
        //   enum ParseClosedExampleError
        //   {
        //       UnknownName(::std::string::String),
        //       UnknownValue(u8),
        //   }
        //   impl ::std::str::FromStr for ClosedExample
        //   {
        //       type Err = ParseClosedExampleError;
        //       fn from_str(s: &str) -> ::std::result::Result<Self, Self::Err>
        //       {
        //           match s.to_ascii_lowercase().as_str()
        //           {
        //               "One" => Ok(Self::One),
        //               "two" => Ok(Self::Two),
        //               "five" => Ok(Self::Five),
        //               other => {
        //                   use ::std::convert::TryFrom;
        //                   let value : u8 = if let Some(rest) = other.strip_prefix("0x") {
        //                       u8::from_str_radix(rest, 16)
        //                   } else if let Some(rest) = other.strip_prefix("0o") {
        //                       u8::from_str_radix(rest, 8)
        //                   } else {
        //                       other.parse()
        //                   }.map_err(|_| ParseClosedExampleError::UnknownName(s.into()))?;
        //                   match ClosedExample::try_from(value) {
        //                       Err(v) => unreachable!(),
        //                       Ok(v) => Ok(v),
        //                   }
        //               }
        //           }
        //       }
        //   }
        let matcharms: Vec<_> = mappings
            .iter()
            .map(|(name, lower_name, lit, def, _)| {
                if matches!(lit, Expr::Range(_)) {
                    quote! {
                        #lower_name => Ok(Self::#name(#def)),
                    }
                } else {
                    quote! {
                        #lower_name => Ok(Self :: #name),
                    }
                }
            })
            .collect();
        let errorname = Ident::new(&format!("Parse{}Error", name), name.span());

        let err_convert_case = if default_variant.is_some() {
            quote!(
                Err(v) => unreachable!(),
            )
        } else {
            quote!(
                Err(_) => Err(#errorname :: UnknownValue(value)),
            )
        };

        let t = quote! {
            #[derive(Debug)]
            #visibility enum #errorname {
                UnknownName(::std::string::String),
                UnknownValue(#inttype),
            }

            impl ::std::str::FromStr for #name {
                type Err = #errorname;

                fn from_str(s: &str) -> ::std::result::Result<Self, Self::Err> {
                    match s.to_ascii_lowercase().as_str() {
                        #(#matcharms)*
                        other => {
                            use ::std::convert::TryFrom;
                            let value: #inttype = if let Some(rest) = other.strip_prefix("0x") {
                                #inttype :: from_str_radix(rest, 16)
                            } else if let Some(rest) = other.strip_prefix("0o") {
                                #inttype :: from_str_radix(rest, 8)
                            } else {
                                other.parse()
                            }.map_err(|_| #errorname :: UnknownName(s.into()))?;
                            match #name :: try_from(value) {
                                #err_convert_case
                                Ok(v) => Ok(v),
                            }
                        }
                    }
                }
            }
        };
        t.to_tokens(&mut tokens);
    }

    Ok(tokens)
}

#[doc(hidden)]
#[proc_macro_derive(Convert, attributes(value, exhaustive, ranged, default))]
pub fn derive_convert(item: TokenStream) -> TokenStream {
    let input = parse_macro_input!(item as DeriveInput);
    match generate_conversions(input, Mode::Convert) {
        Ok(res) => res.into(),
        Err(err) => err.to_compile_error().into(),
    }
}

fn to_derive(mut input: DeriveInput, mode: Mode) -> Result<DeriveInput, Error> {
    let variants = match &mut input.data {
        Data::Enum(data) => &mut data.variants,
        _ => return Err(Error::new_spanned(input, "input must be an enum")),
    };

    input.attrs.insert(
        0,
        match mode {
            Mode::Convert => {
                parse_quote!(
                    #[derive(::enumber::Convert)]
                )
            }
            Mode::Into => {
                parse_quote!(
                    #[derive(::enumber::Into)]
                )
            }
        },
    );

    let mut repr = find_repr(&input.ident, &input.attrs).ok();

    for variant in variants.iter_mut() {
        let mut ranged = false;
        if let Some((_, e)) = variant.discriminant.take() {
            let e: Expr = e;
            if matches!(e, Expr::Range(_)) {
                variant.attrs.push(parse_quote!(
                    #[ranged(#e)]
                ));
                ranged = true;
            } else {
                variant.attrs.push(parse_quote!(
                    #[value(#e)]
                ));
            }
        }
        if mode != Mode::Into && matches!(variant.fields, Fields::Unnamed(_)) {
            variant.attrs.push(parse_quote!(#[default]));
            repr = Some(match &variant.fields {
                Fields::Unnamed(u) => u.unnamed[0].ty.clone(),
                _ => unreachable!(),
            });
        } else if ranged {
            if let Some(ty) = repr.as_ref() {
                let mut unnamed = Punctuated::new();
                unnamed.push(Field {
                    attrs: Vec::new(),
                    vis: Visibility::Inherited,
                    ident: None,
                    colon_token: None,
                    ty: ty.clone(),
                });
                variant.fields = Fields::Unnamed(FieldsUnnamed {
                    paren_token: Paren {
                        span: variant.span(),
                    },
                    unnamed,
                });
            }
        }
    }

    Ok(input)
}

/// Convert an `enumber` compliant enum into a proper enum with
/// appropriate associated traits.
///
/// As an example, you might have the following enum definition:
///
/// ```rust
/// #[enumber::convert]
/// enum Ordinals {
///     First = 1,
///     Second = 2,
///     Third = 3,
///     TheRest(u16),
/// }
/// ```
///
/// Normally that enum would be invalid because of the combination of
/// both explicit discriminants, and a tuple-style variant.  The conversion
/// will strip the discriminants off the enumeration and then implement
/// conversions to/from the number type of the tuple-style variant.
///
/// In addition, implementations of [`Display`][std::fmt::Display] and
/// [`FromStr`][std::str::FromStr] will be automatically provided.  The error
/// type for the `FromStr` implementation will be named `Parse${NAME}Error`
/// and will have the same visibility specifier as your enum had.
///
/// The error enumeration will look like this:
///
/// ```rust,no_compile
/// enum ParseOrdinalsError {
///     UnknownName(String),
///     UnknownValue(u16)
/// }
/// ```
///
/// Naturally the integer type in the `UnknownValue` variant will be that of the
/// enum's tuple-style variant.
///
/// If you do not wish to have an "other" variant, then you can omit it, in which
/// case you must specify the representation of the enumeration explicitly:
///
/// ```rust
/// #[enumber::convert]
/// #[repr(u8)]
/// enum AccessLevel {
///     Guest = 0,
///     Member = 1,
///     Developer = 2,
///     Owner = 3,
/// }
/// ```
///
/// In this case, `From<${TYPE}>` will not be implemented, and instead there
/// will be an implementation of `TryFrom<${TYPE}>` where the error type for
/// that conversion is simply the input number type.
///
/// You *may* specify variants as taking a range rather than a fixed value,
/// and if you do, then the variant will be converted into a tuple type
/// automatically, in order to hold the exact value given during conversion.
/// As with the above examples, if you do not also specify a default variant
/// then you will have to specify the relevant integer representation.
///
/// Finally, if you are certain that your given values (or ranges) cover all
/// possible input values to the conversion functions, and you wish to omit the
/// default variant, then you can specify `#[exhaustive]` on the enumeration and
/// `enumber` will create a `From<${TYPE}>` impl despite the lack of the default
/// variant.  Of course, if your values are not exhaustive then the compiler will
/// flag an error and not continue.
///
/// ```rust,compile_fail
/// #[enumber::convert]
/// #[exhaustive]
/// #[repr(u8)]
/// enum Age {
///     Child = 0..=12,
///     Teenager = 13..=19,
///     Adult = 20..=65,
///     Pensioner = 66..=254, // Not quite enough, so this will fail to compile
/// }
/// ```
#[proc_macro_attribute]
pub fn convert(_attr: TokenStream, item: TokenStream) -> TokenStream {
    let input = parse_macro_input!(item as DeriveInput);

    match to_derive(input, Mode::Convert) {
        Ok(res) => quote!(#res).into(),
        Err(err) => err.to_compile_error().into(),
    }
}

#[doc(hidden)]
#[proc_macro_derive(Into, attributes(value))]
pub fn derive_into(item: TokenStream) -> TokenStream {
    let input = parse_macro_input!(item as DeriveInput);
    match generate_conversions(input, Mode::Into) {
        Ok(res) => res.into(),
        Err(err) => err.to_compile_error().into(),
    }
}

/// Convert an `enumber` compliant enum whose variants have data into
/// a proper enum with appropriate associated traits.
///
/// As an example, you might have the following enum definition:
///
/// ```rust
/// #[enumber::into]
/// #[repr(usize)]
/// enum Errors {
///     Success = 0,
///     #[value(0x10)] NotDefined(String),
///     InvalidArg(String, String) = 0x20,
///     OpNotSupported = 0x30,
/// }
/// ```
///
/// Enumber turns this into a normal enum and also implements
/// [`From`][std::convert::From].  This makes it easy to convert the
/// enum into its corresponding numeric value, which is particularly
/// useful when converting from rich Rust-style errors to C-style
/// error codes:
///
/// ```rust
/// # #[enumber::into]
/// # #[repr(usize)]
/// # enum Errors {
/// #     Success = 0,
/// #     #[value(0x10)] NotDefined(String),
/// #     InvalidArg(String, String) = 0x20,
/// #     OpNotSupported = 0x30,
/// # }
/// type ErrorCode = usize;
///
/// fn some_ffi() -> ErrorCode {
///     Errors::OpNotSupported.into()
/// }
/// # assert_eq!(some_ffi(), 0x30);
/// ```
///
/// Unlike the [`convert`][macro@convert] macro, this macro does not
/// generate an implementation of `From` in the opposite direction
/// (i.e., from a numeric value to a variant), nor does it generate an
/// implementation of [`FromStr`][std::str::FromStr] for the simple
/// reason that it is not possible to convert an error code to a
/// variant that has data without having default values, which is not
/// always reasonable.
///
/// This macro also doesn't support ranges or a default, because we
/// are only converting from variants to values and only a single
/// value per variant makes sense.  As such, the following does not
/// work:
///
/// ```rust,compile_fail
/// #[enumber::into]
/// #[repr(u8)]
/// enum Age {
///     Child(String) = 0..=12,
///     Teenager(String) = 13..=19,
///     Adult(String) = 20..=65,
///     Pensioner(String) = 66..=255,
/// }
/// ```
///
/// And, `into` does not implement Display as there isn't a single
/// reasonable way to implement Display for variants with data.
#[proc_macro_attribute]
pub fn into(_attr: TokenStream, item: TokenStream) -> TokenStream {
    let input = parse_macro_input!(item as DeriveInput);

    match to_derive(input, Mode::Into) {
        Ok(res) => quote!(#res).into(),
        Err(err) => err.to_compile_error().into(),
    }
}