1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
//! A proc macro for designing loosely coupled Rust applications.
//!
//! [`entrait`](entrait) is used to generate an _implemented trait_ from the definition of regular functions.
//! The emergent pattern that results from its use enable the following things:
//! * Zero-cost loose coupling and inversion of control
//! * Dependency graph as a compile time concept
//! * Mock library integrations
//! * Clean, readable, boilerplate-free code
//!
//! The resulting pattern is referred to as [the entrait pattern](https://audunhalland.github.io/blog/entrait-pattern/) (see also: [philosophy](#philosophy)).
//!
//! # Introduction
//!
//! The macro looks like this:
//!
//! ```rust
//! # use entrait::entrait;
//! #[entrait(MyFunction)]
//! fn my_function<D>(deps: &D) {
//! }
//! ```
//!
//! which generates a new single-method trait named `MyFunction`, with the method signature derived from the original function.
//! Entrait is a pure append-only macro: It will never alter the syntax of your function.
//! The new language items it generates will appear below the function.
//!
//! In the first example, `my_function` has a single parameter called `deps` which is generic over a type `D`, and represents dependencies injected into the function.
//! The dependency parameter is always the first parameter, which is analogous to the `&self` parameter of the generated trait method.
//!
//! To add a dependency, we just introduce a trait bound, now expressable as `impl Trait`.
//! This is demonstrated by looking at one function calling another:
//!
//! ```rust
//! # use entrait::entrait;
//! #[entrait(Foo)]
//! fn foo(deps: &impl Bar) {
//!     println!("{}", deps.bar(42));
//! }
//!
//! #[entrait(Bar)]
//! fn bar<D>(deps: &D, n: i32) -> String {
//!     format!("You passed {n}")
//! }
//! ```
//!
//!
//! ### Multiple dependencies
//! Other frameworks might represent multiple dependencies by having one value for each one, but entrait represents all dependencies _within the same value_.
//! When the dependency parameter is generic, its trait bounds specifiy what methods we expect to be callable inside the function.
//!
//! Multiple bounds can be expressed using the `&(impl A + B)` syntax.
//!
//! The single-value dependency design means that it is always the same reference that is passed around everywhere.
//! But a reference to what, exactly?
//! This is what we have managed to abstract away, which is the [whole point](#testing).
//!
//!
//!
//! ### Runtime and implementation
//! When we want to compile a working application, we need an actual type to inject into the various entrait entrypoints.
//! Two things will be important:
//!
//! * All trait bounds used deeper in the graph will implicitly "bubble up" to the entrypoint level, so the type we eventually use will need to implement all those traits in order to type check.
//! * The implementations of these traits need to do the correct thing: Actually call the entraited function, so that the dependency graph is turned into an actual _call graph_.
//!
//! Entrait generates _implemented traits_, and the type to use for linking it all together is [`Impl<T>`](crate::Impl):
//!
//! ```rust
//! # use entrait::*;
//! #[entrait(Foo)]
//! fn foo(deps: &impl Bar) -> i32 {
//!     deps.bar()
//! }
//!
//! #[entrait(Bar)]
//! fn bar(_deps: &impl std::any::Any) -> i32 {
//!     42
//! }
//!
//! let app = Impl::new(());
//! assert_eq!(42, app.foo());
//! ```
//!
//! <details>
//! <summary>🔬 <strong>Inspect the generated code</strong> 🔬</summary>
//!
//! The linking happens in the generated impl block for `Impl<T>`, putting the entire impl under a where clause derived from the original dependency bounds:
//!
//! ```rust
//! # use ::entrait::Impl;
//! # trait Foo { fn foo(&self) -> i32; }
//! # trait Bar { fn bar(&self) -> i32; }
//! # fn foo(deps: &impl Bar) -> i32 { deps.bar() }
//! impl<T: Sync> Foo for Impl<T> where Self: Bar {
//!     fn foo(&self) -> i32 {
//!         foo(self) // <---- calls your function
//!     }
//! }
//! ```
//! </details>
//!
//! `Impl` is generic, so we can put whatever type we want into it.
//! Normally this would be some type that represents the global state/configuration of the running application.
//! But if dependencies can only be traits, and we always abstract away this type, how can this state ever be accessed?
//!
//!
//!
//! ### Concrete dependencies
//! So far we have only seen generic trait-based dependencies, but the dependency can also be a _concrete type_:
//!
//! ```rust
//! # use entrait::*;
//! struct Config(i32);
//!
//! #[entrait(UseTheConfig)]
//! fn use_the_config(config: &Config) -> i32 {
//!     config.0
//! }
//!
//! #[entrait(DoubleIt)]
//! fn double_it(deps: &impl UseTheConfig) -> i32 {
//!     deps.use_the_config() * 2
//! }
//!
//! assert_eq!(42, Impl::new(Config(21)).double_it());
//! ```
//!
//! The parameter of `use_the_config` is in the first position, so it represents the dependency.
//!
//! We will notice two interesting things:
//! * Functions that depend on `UseTheConfig`, either directly or indirectly, now have only one valid dependency type: `Impl<Config>`<sup>[1](#desugaring-of-concrete-deps)</sup>.
//! * Inside `use_the_config`, we have a `&Config` reference instead of `&Impl<Config>`. This means we cannot call other entraited functions, because they are not implemented for `Config`.
//!
//! The last point means that a concrete dependency is the end of the line, a leaf in the dependency graph.
//!
//! Typically, functions with a concrete dependency should be kept small and avoid extensive business logic.
//! They ideally function as accessors, providing a loosely coupled abstraction layer over concrete application state.
//!
//!
//! ### Module support
//! To reduce the number of generated traits, entrait can be used as a `mod` attribute.
//! When used in this mode, the macro will look for non-private functions directly within the module scope, to be represented as methods on the resulting trait.
//! This mode works mostly identically to the standalone function mode.
//!
//! ```rust
//! # mod example {
//! # use entrait::*;
//! # #[entrait(SomeTrait)]
//! # fn some_trait<D>(_: &D) {}
//! # #[entrait(OtherTrait)]
//! # fn other_trait<D>(_: &D) {}
//! #[entrait(pub MyModule)]
//! mod my_module {
//!     pub fn foo(deps: &impl super::SomeTrait) {}
//!     pub fn bar(deps: &impl super::OtherTrait) {}
//! }
//! # }
//! ```
//! This example generates a `MyModule` trait containing the methods `foo` and `bar`.
//!
//!
//! # Testing
//! ## Trait mocking with `Unimock`
//!
//! The whole point of entrait is to provide inversion of control, so that alternative dependency implementations can be used when unit testing function bodies.
//! While test code can contain manual trait implementations, the most ergonomic way to test is to use a mocking library, which provides more features with less code.
//!
//! Entrait works best together with [unimock](https://docs.rs/unimock/latest/unimock/), as these two crates have been designed from the start with each other in mind.
//!
//! Unimock exports a single mock struct which can be passed as argument to every function that accept a generic `deps` parameter
//!   (given that entrait is used with unimock support everywhere).
//! To enable mocking of entraited functions, they get reified and defined as a type called `TraitMock` where `Trait` is the name of the trait.
//! This works the same way for entraited modules, only that we already _have_ a module to export from.
//!
//! Unimock support is enabled by passing the `unimock` option to entrait (`#[entrait(Foo, unimock)]`), or turning on the `unimock` _feature_, which makes all entraited functions mockable, even in upstream crates.
//!
//! ```rust
//! # use entrait::entrait_export as entrait;
//! # use unimock::*;
//! #[entrait(Foo)]
//! fn foo<D>(_: &D) -> i32 {
//!     unimplemented!()
//! }
//! #[entrait(MyMod)]
//! mod my_mod {
//!     pub fn bar<D>(_: &D) -> i32 {
//!         unimplemented!()
//!     }
//! }
//!
//! fn my_func(deps: &(impl Foo + MyMod)) -> i32 {
//!     deps.foo() + deps.bar()
//! }
//!
//! let mocked_deps = Unimock::new((
//!     FooMock.each_call(matching!()).returns(40),
//!     my_mod::MyModMock::bar.each_call(matching!()).returns(2),
//! ));
//!
//! assert_eq!(42, my_func(&mocked_deps));
//! ```
//!
//! #### Deep integration testing with unimock
//! Entrait with unimock supports _un-mocking_. This means that the test environment can be _partially mocked!_
//!
//! ```rust
//! # use entrait::entrait_export as entrait;
//! # use unimock::*;
//! #[entrait(SayHello)]
//! fn say_hello(deps: &impl FetchPlanetName, planet_id: u32) -> Result<String, ()> {
//!     Ok(format!("Hello {}!", deps.fetch_planet_name(planet_id)?))
//! }
//!
//! #[entrait(FetchPlanetName)]
//! fn fetch_planet_name(deps: &impl FetchPlanet, planet_id: u32) -> Result<String, ()> {
//!     let planet = deps.fetch_planet(planet_id)?;
//!     Ok(planet.name)
//! }
//!
//! pub struct Planet {
//!     name: String
//! }
//!
//! #[entrait(FetchPlanet)]
//! fn fetch_planet(deps: &(), planet_id: u32) -> Result<Planet, ()> {
//!     unimplemented!("This doc test has no access to a database :(")
//! }
//!
//! let hello_string = say_hello(
//!     &Unimock::new_partial(
//!         FetchPlanetMock
//!             .some_call(matching!(123456))
//!             .returns(Ok(Planet {
//!                 name: "World".to_string(),
//!             }))
//!     ),
//!     123456,
//! ).unwrap();
//!
//! assert_eq!("Hello World!", hello_string);
//! ```
//!
//! This example used [`Unimock::new_partial`](unimock::Unimock::new_partial) to create a mocker that works mostly like `Impl`, except that the call graph can be short-circuited at arbitrary, run-time configurable points.
//! The example code goes through three layers (`say_hello => fetch_planet_name => fetch_planet`), and only the deepest one gets mocked out.
//!
//!
//! ### Alternative mocking: Mockall
//! If you instead wish to use a more established mocking crate, there is also support for [mockall](https://docs.rs/mockall/latest/mockall/).
//! Note that mockall has some limitations.
//! Multiple trait bounds are not supported, and deep tests will not work.
//! Also, mockall tends to generate a lot of code, often an order of magnitude more than unimock.
//!
//! Enabling mockall is done using the `mockall` entrait option.
//! There is no cargo feature to turn this on implicitly, because mockall doesn't work well when it's re-exported through another crate.
//!
//! ```rust
//! # use entrait::entrait_export as entrait;
//! #[entrait(Foo, mockall)]
//! fn foo<D>(_: &D) -> u32 {
//!     unimplemented!()
//! }
//!
//! fn my_func(deps: &impl Foo) -> u32 {
//!     deps.foo()
//! }
//!
//! fn main() {
//!     let mut deps = MockFoo::new();
//!     deps.expect_foo().returning(|| 42);
//!     assert_eq!(42, my_func(&deps));
//! }
//! ```
//!
//!
//! # Multi-crate architecture
//!
//! A common technique for Rust application development is to choose a multi-crate architecture.
//! There are usually two main ways to go about it:
//!
//! 1. The call graph and crate dependency go in the same direction.
//! 2. The call graph and crate dependency go in _opposite_ directions.
//!
//! The first option is how libraries are normally used: Its functions are just called, without any indirection.
//!
//! The second option can be referred to as a variant of the
//!     [dependency inversion principle](https://en.wikipedia.org/wiki/Dependency_inversion_principle).
//! This is usually a desirable architectural property, and achieving this with entrait is what this section is about.
//!
//! The main goal is to be able to express business logic _centrally_, and avoid depending directly on infrastructure details (onion architecture).
//! All of the examples in this section make some use of traits and trait delegation.
//!
//!
//! ### Case 1: Concrete leaf dependencies
//! Earlier it was mentioned that when concrete-type dependencies are used, the `T` in `Impl<T>`, your application, and the type of the dependency have to match.
//! But this is only partially true.
//! It really comes down to which traits are implemented on what types:
//!
//! ```rust
//! # use entrait::*;
//! pub struct Config {
//!     foo: String,
//! }
//!
//! #[entrait_export(pub GetFoo)]
//! fn get_foo(config: &Config) -> &str {
//!     &config.foo
//! }
//! ```
//!
//! <details>
//! <summary>🔬 <strong>Inspect the generated code</strong> 🔬</summary>
//!
//! ```rust
//! # use ::entrait::Impl;
//! # pub struct Config { foo: String, }
//! # fn get_foo(config: &Config) -> &str { &config.foo }
//! trait GetFoo {
//!     fn get_foo(&self) -> &str;
//! }
//! impl<T: GetFoo> GetFoo for Impl<T> {
//!     fn get_foo(&self) -> &str {
//!         self.as_ref().get_foo()
//!     }
//! }
//! impl GetFoo for Config {
//!     fn get_foo(&self) -> &str {
//!         get_foo(self)
//!     }
//! }
//! ```
//!
//! </details>
//!
//! Here we actually have a trait `GetFoo` that is implemented two times: for `Impl<T> where T: GetFoo` and for `Config`.
//! The first implementation is delegating to the other one.
//!
//! For making this work with _any_ downstream application type, we just have to manually implement `GetFoo` for that application:
//!
//! ```rust
//! # mod some_upstream_crate {
//! #     use entrait::*;
//! #     pub struct Config { pub foo: String }
//! #     #[entrait_export(pub GetFoo)]
//! #     fn get_foo(config: &Config) -> &str {
//! #         &config.foo
//! #     }
//! # }
//! struct App {
//!     config: some_upstream_crate::Config,
//! }
//! impl some_upstream_crate::GetFoo for App {
//!     fn get_foo(&self) -> &str {
//!         self.config.get_foo()
//!     }
//! }
//! ```
//!
//!
//! ### Case 2: Hand-written trait as a leaf dependency
//! Using a concrete type like `Config` from the first case can be contrived in many situations.
//! Sometimes a good old hand-written trait definition will do the job much better:
//!
//! ```rust
//! # use entrait::*;
//! #[entrait]
//! pub trait System {
//!     fn current_time(&self) -> u128;
//! }
//! ```
//!
//! <details>
//! <summary>🔬 <strong>Inspect the generated code</strong> 🔬</summary>
//!
//! ```rust
//! # use ::entrait::Impl;
//! # pub trait System: 'static { fn current_time(&self) -> u128; }
//! impl<T: System> System for Impl<T> {
//!     fn current_time(&self) -> u128 {
//!         self.as_ref().current_time()
//!     }
//! }
//! ```
//!
//! </details>
//!
//! What the attribute does in this case, is just to generate the correct blanket implementations of the trait: _delegation_ and _mocks_.
//!
//! To use with some `App`, just implement the trait for it.
//!
//!
//! ### Case 3: Hand-written trait as a leaf dependency using _dynamic dispatch_
//! Sometimes it might be desirable to have a delegation that involves dynamic dispatch.
//! Entrait has a `delegate_by =` option, where you can pass an alternative trait to use as part of the delegation strategy.
//! To enable dynamic dispatch, use [Borrow](::core::borrow::Borrow):
//!
//! ```rust
//! # use entrait::*;
//! #[entrait(delegate_by = Borrow)]
//! trait ReadConfig: 'static {
//!     fn read_config(&self) -> &str;
//! }
//! ```
//!
//! <details>
//! <summary>🔬 <strong>Inspect the generated code</strong> 🔬</summary>
//!
//! ```rust
//! # use ::entrait::Impl;
//! # trait ReadConfig: 'static { fn read_config(&self) -> &str; }
//! impl<T: ::core::borrow::Borrow<dyn ReadConfig> + 'static> ReadConfig for Impl<T> {
//!     fn read_config(&self) -> &str {
//!         self.as_ref().borrow().read_config()
//!     }
//! }
//! ```
//!
//! </details>
//!
//! To use this together with some `App`, implement `Borrow<dyn ReadConfig>` for it.
//!
//!
//! ### Case 4: Truly inverted _internal dependencies_ - static dispatch
//! All cases up to this point have been _leaf dependencies_.
//! Leaf dependencies are delegations that exit from the `Impl<T>` layer, using delegation targets involving concete `T`'s.
//! This means that it is impossible to continue to use the entrait pattern and extend your application behind those abstractions.
//!
//! To make your abstraction _extendable_ and your dependency _internal_, we have to keep the `T` generic inside the [Impl] type.
//! To make this work, we have to make use of two helper traits:
//!
//! ```rust
//! # use entrait::*;
//! #[entrait(RepositoryImpl, delegate_by = DelegateRepository)]
//! pub trait Repository {
//!     fn fetch(&self) -> i32;
//! }
//! ```
//!
//! <details>
//! <summary>🔬 <strong>Inspect the generated code</strong> 🔬</summary>
//!
//! ```rust
//! # use ::entrait::Impl;
//! # trait Repository { fn fetch(&self) -> i32; }
//! pub trait RepositoryImpl<T> {
//!     fn fetch(_impl: &Impl<T>) -> i32;
//! }
//! pub trait DelegateRepository<T> {
//!     type Target: RepositoryImpl<T>;
//! }
//! impl<T: DelegateRepository<T>> Repository for Impl<T> {
//!     fn fetch(&self) -> i32 {
//!         <T as DelegateRepository<T>>::Target::fetch(self)
//!     }
//! }
//! ```
//!
//! </details>
//!
//! This syntax introduces a total of _three_ traits:
//!
//! * `Repository`: The _dependency_, what the rest of the application directly calls.
//! * `RepositoryImpl<T>`: The _delegation target_, a trait which needs to be implemented by some `Target` type.
//! * `DelegateRepository<T>`: The _delegation selector_, that selects the specific `Target` type to be used for some specific `App`.
//!
//! This design makes it possible to separate concerns into three different crates, ordered from most-upstream to most-downstream:
//! 1. _Core logic:_ Depend on and call `Repository` methods.
//! 2. _External system integration:_ Provide some implementation of the repository, by implementing `RepositoryImpl<T>`.
//! 3. _Executable:_ Construct an `App` that selects a specific repository implementation from crate 2.
//!
//! All delegation from `Repository` to `RepositoryImpl<T>` goes via the `DelegateRepository<T>` trait.
//! The method signatures in `RepositoryImpl<T>` are _static_, and receives the `&Impl<T>` via a normal parameter.
//! This allows us to continue using entrait patterns within those implementations!
//!
//! In _crate 2_, we have to provide an implementation of `RepositoryImpl<T>`.
//! This can either be done manually, or by using the [entrait] attribute on an `impl` block:
//!
//! ```rust
//! # mod demo {
//! # use entrait::*;
//! # mod crate1 {
//! #     use super::*;
//! #     pub trait RepositoryImpl<T> { fn fetch(_impl: &Impl<T>) -> i32; }
//! # }
//! pub struct MyRepository;
//!
//! #[entrait]
//! impl crate1::RepositoryImpl for MyRepository {
//!     // this function has the now-familiar entrait-compatible signature:
//!     fn fetch<D>(deps: &D) -> i32 {
//!         unimplemented!()
//!     }
//! }
//! # } // demo
//! ```
//!
//! <details>
//! <summary>🔬 <strong>Inspect the generated code</strong> 🔬</summary>
//!
//! ```rust
//! # mod demo {
//! # use entrait::*;
//! # mod crate1 {
//! #     use super::*;
//! #     pub trait RepositoryImpl<T> { fn fetch(_impl: &Impl<T>) -> i32; }
//! # }
//! # pub struct MyRepository;
//! impl MyRepository {
//!     fn fetch<D>(deps: &D) -> i32 {
//!         unimplemented!()
//!     }
//! }
//! impl<T> crate1::RepositoryImpl<T> for MyRepository {
//!     #[inline]
//!     fn fetch(_impl: &Impl<T>) -> i32 {
//!         Self::fetch(_impl)
//!     }
//! }
//! # } // demo
//! ```
//!
//! </details>
//!
//! Entrait will split this trait implementation block in two: An _inherent_ one containing the original code, and a proper trait implementation which performs the delegation.
//!
//! In the end, we just have to implement our `DelegateRepository<T>`:
//!
//! ```rust
//! # mod demo {
//! # use entrait::*;
//! # mod crate1 { pub trait DelegateRepository<T> { type Target; } }
//! # mod crate2 { pub struct MyRepository; }
//! // in crate3:
//! struct App;
//! impl crate1::DelegateRepository<Self> for App {
//!     type Target = crate2::MyRepository;
//! }
//! fn main() { /* ... */ }
//! # } // demo
//! ```
//!
//!
//! ### Case 5: Truly inverted internal dependencies - dynamic dispatch
//! A small variation of case 4: Use `delegate_by = Borrow` instead of a custom trait.
//! This makes the delegation happen using dynamic dispatch.
//!
//! The implementation syntax is almost the same as in case 4, only that the entrait attribute must now be `#[entrait(dyn)]`:
//!
//! ```rust
//! # mod demo {
//! # use entrait::*;
//! #[entrait(RepositoryImpl, delegate_by = Borrow)]
//! pub trait Repository {
//!     fn fetch(&self) -> i32;
//! }
//!
//! pub struct MyRepository;
//!
//! #[entrait(dyn)]
//! impl RepositoryImpl for MyRepository {
//!     fn fetch<D>(deps: &D) -> i32 {
//!         unimplemented!()
//!     }
//! }
//! # } // demo
//! ```
//!
//! The app must now implement `Borrow<dyn RepositoryImpl<Self>>`.
//!
//!
//!
//!
//! # Options and features
//!
//! #### Trait visibility
//! by default, entrait generates a trait that is module-private (no visibility keyword).
//! To change this, just put a visibility specifier before the trait name:
//!
//! ```rust
//! use entrait::*;
//! #[entrait(pub Foo)]   // <-- public trait
//! fn foo<D>(deps: &D) { // <-- private function
//! }
//! ```
//!
//! #### `async` support
//! Since Rust at the time of writing does not natively support async methods in traits, you may opt in to having `#[async_trait]` generated for your trait.
//! Enable the `boxed-futures` cargo feature and pass the `box_future` option like this:
//!
//! ```rust
//! # use entrait::entrait;
//! #[entrait(Foo, box_future)]
//! async fn foo<D>(deps: &D) {
//! }
//! ```
//! This is designed to be forwards compatible with [static async fn in traits](https://rust-lang.github.io/rfcs/3185-static-async-fn-in-trait.html).
//! When that day comes, you should be able to just remove that option and get a proper zero-cost future.
//!
//! There is a cargo feature to automatically apply `#[async_trait]` to every generated async trait: `use-boxed-futures`.
//!
//! #### Zero-cost async inversion of control - preview mode
//! Entrait has experimental support for zero-cost futures. A nightly Rust compiler is needed for this feature.
//!
//! The entrait option is called `associated_future`, and uses GATs and `feature(type_alias_impl_trait)`.
//! This feature generates an associated future inside the trait, and the implementations use `impl Trait` syntax to infer
//! the resulting type of the future:
//!
//! ```ignore
//! #![feature(type_alias_impl_trait)]
//!
//! use entrait::*;
//!
//! #[entrait(Foo, associated_future)]
//! async fn foo<D>(deps: &D) {
//! }
//! ```
//!
//! There is a feature for turning this on everywhere: `use-associated-futures`.
//!
//! #### Integrating with other `fn`-targeting macros, and `no_deps`
//! Some macros are used to transform the body of a function, or generate a body from scratch.
//! For example, we can use [`feignhttp`](https://docs.rs/feignhttp/latest/feignhttp/) to generate an HTTP client. Entrait will try as best as it
//! can to co-exist with macros like these. Since `entrait` is a higher-level macro that does not touch fn bodies (it does not even try to parse them),
//! entrait should be processed after, which means it should be placed _before_ lower level macros. Example:
//!
//! ```rust
//! # use entrait::entrait;
//! #[entrait(FetchThing, no_deps)]
//! #[feignhttp::get("https://my.api.org/api/{param}")]
//! async fn fetch_thing(#[path] param: String) -> feignhttp::Result<String> {}
//! ```
//!
//! Here we had to use the `no_deps` entrait option.
//! This is used to tell entrait that the function does not have a `deps` parameter as its first input.
//! Instead, all the function's inputs get promoted to the generated trait method.
//!
//! #### Conditional compilation of mocks
//! Most often, you will only need to generate mock implementations for test code, and skip this for production code.
//! A notable exception to this is when building libraries.
//! When an application consists of several crates, downstream crates would likely want to mock out functionality from libraries.
//!
//! Entrait calls this _exporting_, and it unconditionally turns on autogeneration of mock implementations:
//!
//! ```
//! # use entrait::*;
//! #[entrait_export(pub Bar)]
//! fn bar(deps: &()) {}
//! ```
//! or
//! ```
//! # use entrait::*;
//! #[entrait(pub Foo, export)]
//! fn foo(deps: &()) {}
//! ```
//!
//! It is also possible to reduce noise by doing `use entrait::entrait_export as entrait`.
//!
//! #### Feature overview
//! | Feature                  | Implies         | Description         |
//! | -------------------      | --------------- | ------------------- |
//! | `unimock`                |                 | Adds the [unimock] dependency, and turns on Unimock implementations for all traits. |
//! | `use-boxed-futures`      | `boxed-futures` | Automatically applies the [async_trait] macro to async trait methods. |
//! | `use-associated-futures` |                 | Automatically transforms the return type of async trait methods into an associated future by using type-alias-impl-trait syntax. Requires a nightly compiler. |
//! | `boxed-futures`          |                 | Pulls in the [async_trait] optional dependency, enabling the `box_future` entrait option (macro parameter). |
//!
//!
//!
//! # "Philosophy"
//! The `entrait` crate is central to the _entrait pattern_, an opinionated yet flexible and _Rusty_ way to build testable applications/business logic.
//!
//! To understand the entrait model and how to achieve Dependency Injection (DI) with it, we can compare it with a more widely used and classical alternative pattern:
//!     _Object-Oriented DI_.
//!
//! In object-oriented DI, each named dependency is a separate object instance.
//! Each dependency exports a set of public methods, and internally points to a set of private dependencies.
//! A working application is built by fully instantiating such an _object graph_ of interconnected dependencies.
//!
//! Entrait was built to address two drawbacks inherent to this design:
//!
//! * Representing a _graph_ of objects (even if acyclic) in Rust usually requires reference counting/heap allocation.
//! * Each "dependency" abstraction often contains a lot of different functionality.
//!     As an example, consider [DDD](https://en.wikipedia.org/wiki/Domain-driven_design)-based applications consisting of `DomainServices`.
//!     There will typically be one such class per domain object, with a lot of methods in each.
//!     This results in dependency graphs with fewer nodes overall, but the number of possible _call graphs_ is much larger.
//!     A common problem with this is that the _actual dependencies_—the functions actually getting called—are encapsulated
//!         and hidden away from public interfaces.
//!     To construct valid dependency mocks in unit tests, a developer will have to read through full function bodies instead of looking at signatures.
//!
//! `entrait` solves this by:
//!
//! * Representing dependencies as _traits_ instead of types, automatically profiting from Rust's builtin zero-cost abstraction tool.
//! * Giving users a choice between fine and coarse dependency granularity, by enabling both single-function traits and module-based traits.
//! * Always declaring dependencies at the function signature level, close to call sites, instead of at module level.
//!
//!
//! # Limitations
//! This section lists known limitations of entrait:
//!
//! ### Cyclic dependency graphs
//! Cyclic dependency graphs are impossible with entrait.
//! In fact, this is not a limit of entrait itself, but with Rust's trait solver.
//! It is not able to prove that a type implements a trait if it needs to prove that it does in order to prove it.
//!
//! While this is a limitation, it is not necessarily a bad one.
//! One might say that a layered application architecture should never contain cycles.
//! If you do need recursive algorithms, you could model this as utility functions outside of the entraited APIs of the application.
//!

#![forbid(unsafe_code)]

#[cfg(feature = "unimock")]
mod macros {
    #[cfg(feature = "use-boxed-futures")]
    mod entrait_auto_async {
        pub use entrait_macros::entrait_export_unimock_use_box_futures as entrait_export;
        pub use entrait_macros::entrait_unimock_use_box_futures as entrait;
    }

    #[cfg(all(feature = "use-associated-futures", not(feature = "use-boxed-futures")))]
    mod entrait_auto_async {
        pub use entrait_macros::entrait_export_unimock_use_associated_futures as entrait_export;
        pub use entrait_macros::entrait_unimock_use_associated_futures as entrait;
    }

    #[cfg(not(any(feature = "use-boxed-futures", feature = "use-associated-futures")))]
    mod entrait_auto_async {
        pub use entrait_macros::entrait_export_unimock as entrait_export;
        pub use entrait_macros::entrait_unimock as entrait;
    }

    pub use entrait_auto_async::*;
}

#[cfg(not(feature = "unimock"))]
mod macros {
    #[cfg(feature = "use-boxed-futures")]
    mod entrait_auto_async {
        pub use entrait_macros::entrait_export_use_box_futures as entrait_export;
        pub use entrait_macros::entrait_use_box_futures as entrait;
    }

    #[cfg(all(feature = "use-associated-futures", not(feature = "use-boxed-futures")))]
    mod entrait_auto_async {
        pub use entrait_macros::entrait_export_use_associated_futures as entrait_export;
        pub use entrait_macros::entrait_use_associated_futures as entrait;
    }

    #[cfg(not(any(feature = "use-boxed-futures", feature = "use-associated-futures")))]
    mod entrait_auto_async {
        pub use entrait_macros::entrait;
        pub use entrait_macros::entrait_export;
    }

    pub use entrait_auto_async::*;
}

/// The entrait attribute macro, used to generate traits and _delegating implementations_ of them.
///
/// ## For functions
/// When used with a function, the macro must be given the name of a trait to generate.
/// The macro will generate that trait, and connect it to the function by supplying an implementation for [Impl], plus optional mock implementations.
///
/// #### Syntax
///
/// ```no_compile
/// #[entrait($visibility? $TraitIdent)]
/// fn ...
/// ```
///
/// * `$visibility`: Optional visibility specifier for the generated trait.
///     See the [Rust documentation](https://doc.rust-lang.org/reference/visibility-and-privacy.html) for valid values.
/// * `$TraitIdent`: Any valid Rust identifier that starts with an upper-case character, used as the name of the new trait.
///
/// with options:
///
/// ```no_compile
/// #[entrait($visibility? $TraitIdent, $option, ...)]
/// fn ...
/// ```
///
/// ## For modules
/// Using the attribute on a module is used to group several non-private functions into one trait.
/// Only non-private functions are considered by the macro.
///
/// #### Syntax
/// ```no_compile
/// #[entrait($visibility? $TraitIdent)]
/// mod some_module {
///     pub fn ...
/// }
/// ```
///
///
/// ## For traits
/// When used with a trait, the macro will only provide a delegating implementation for [Impl] that delegates to another trait implementation.
/// It can also optionally generate mock impls of the trait.
///
/// There are mainly two delegation modes:
///
/// 1. Specify a trait name to use as delegation target, resulting in an _internal dependency_.
/// 2. Don't specify a trait name, resulting in a _leaf dependency_ which has to delegate using the same trait, but for a different type.
///
/// When mocking is enabled, exporting the mocks is implicitly turned on (i.e. not gated by `#[cfg(test)]`).
///
/// #### Syntax
///
/// ```no_compile
/// #[entrait($visibility? $TraitIdent?)]
/// trait ...
/// ```
///
/// with options:
///
/// ```no_compile
/// #[entrait($visibility? $TraitIdent?, $option, ...)]
/// trait ...
/// ```
///
/// ##### Example 1
/// Internal dependency, static dispatch (delegation bound: `T: DelegateFoo<T>`):
/// ```rust
/// # use entrait::*;
/// #[entrait(FooImpl, delegate_by = DelegateFoo)]
/// trait Foo {}
/// ```
/// Note: The associated type `DelegateFoo<T>::Target` must implement `FooImpl<T>`.
///
/// ##### Example 2
/// Leaf dependency, static dispatch (delegation bound: `T: Foo`):
/// ```rust
/// # use entrait::*;
/// #[entrait]
/// trait Foo {}
/// ```
///
/// ##### Example 3
/// Leaf dependency, dynamic dispatch (delegation bound: `T: Borrow<dyn Foo>`):
/// ```rust
/// # use entrait::*;
/// #[entrait(delegate_by = Borrow)]
/// trait Foo {}
/// ```
///
///
/// ## For impl blocks
/// When used on an impl block, the macro will generate a delegating implementation for a _delegation trait_ "`TraitImpl`" generated with `#[entrait(TraitImpl)] trait Trait {}`.
///
/// The impl block must be be a trait implementation, not an inherent implementation.
/// Within this block, only static methods with a dependency receiver are supported.
/// These methods must correspond with the method definitions from the trait that is implemented.
/// I.e. the method signatures have to match, except for `self` receivers which must be replaced by dependency receivers.
///
/// The macro will convert the impl block from a trait implementation to an inherent implementation block, and additionally generate a proper trait implementation block based on the methods present.
///
/// Given the trait declaration:
///
/// ```rust
/// # use entrait::*;
/// #[entrait(TraitImpl, delegate_by = DelegateTrait)]
/// trait Trait {
///     fn foo(&self, arg: i32) -> i32;
/// }
/// ```
///
/// The delegation chain is fulfilled with a block like the following:
///
/// ```rust
/// # use entrait::*;
/// # #[entrait(TraitImpl, delegate_by = DelegateTrait)]
/// # trait Trait {
/// #     fn foo(&self, arg: i32) -> i32;
/// # }
/// pub struct MyType;
///
/// #[entrait]
/// impl TraitImpl for MyType {
///     fn foo(_deps: &impl std::any::Any, arg: i32) -> i32 {
///         arg * 2
///     }
/// }
///
/// struct App;
///
/// // The type `MyType` may now be used as a delegation target:
/// impl DelegateTrait<Self> for App {
///     type Target = MyType;
/// }
///
/// assert_eq!(42, Impl::new(App).foo(21));
/// ```
///
/// ##### `Borrow` delegation and `dyn`:
/// The only attribute parameter currently supported on impl blocks is adding the `dyn` keyword, to indicate that the delegation strategy uses dynamic dispatch:
///
/// ```rust
/// # use entrait::*;
/// #[entrait(TraitImpl, delegate_by = Borrow)]
/// trait Trait {
///     fn foo(&self, arg: i32) -> i32;
/// }
///
/// struct MyType;
///
/// #[entrait(dyn)]
/// impl TraitImpl for MyType {
///     fn foo(_deps: &impl std::any::Any, arg: i32) -> i32 {
///         arg * 2
///     }
/// }
/// ```
///
/// #### Syntax
/// ```no_compile
/// #[entrait(dyn?)]
/// impl TraitPath for Type {
///     ...
/// }
/// ```
///
///
///
/// # Options
/// An option can be just `$option` or `$option = $value`. An option without value means `true`.
///
/// | Option              | Type                         | Target             | Default     | Description         |
/// | ------------------- | ---------------------------- | ------------------ | ----------- | ------------------- |
/// | `no_deps`           | `bool`                       | `fn`               | `false`     | Disables the dependency parameter, so that the first parameter is just interpreted as a normal function parameter. Useful for reducing noise in some situations. |
/// | `export`            | `bool`                       | `fn`+`mod`         | `false`     | If mocks are generated, exports these mocks even in release builds. Only relevant for libraries. |
/// | `unimock`           | `bool`                       | `fn`+`mod`+`trait` | `false`[^1] | Used to turn _off_ unimock implementation when the `unimock` _feature_ is enabled. |
/// | `mockall`           | `bool`                       | `fn`+`mod`+`trait` | `false`     | Enable mockall mocks. |
/// | `box_future`        | `bool`                       | `fn`+`mod`+`trait` | `false`[^2] | In the case of an `async fn`, use the `async_trait` macro on the resulting trait. Requires the `boxed-futures` entrait feature. |
/// | `associated_future` | `bool`                       | `fn`+`mod`+`trait` | `false`[^3] | In the case of an `async fn`, use an associated future to avoid heap allocation. Currently requires a nighlty Rust compiler, with `feature(type_alias_impl_trait)`. |
/// | `delegate_by`       | `Self`/`Borrow`/custom ident | `trait`            | `Self`      | Controls the generated `Impl<T>` delegation of this trait. `Self` generates a `T: Trait` bound. `Borrow` generates a [`T: Borrow<dyn Trait>`](::core::borrow::Borrow) bound. Any other value generates a new trait with that name which controls the delegation. |
///
/// [^1]: Enabled by default by turning on the `unimock` cargo feature.
///
/// [^2]: Enabled by default by turning on the `use-boxed-futures` cargo feature.
///
/// [^3]: Enabled by default by turning on the `use-associated-futures` cargo feature.
pub use macros::entrait;

/// Same as the [`entrait`](entrait) macro, only that the `export` option is set to true.
///
/// This can be used in libraries to export mocks.
///
/// A good way to reduce noise can to to import it as `use entrait::entrait_export as entrait;`.
pub use macros::entrait_export;

/// Re-exported from the [implementation] crate.
pub use ::implementation::Impl;

/// Optional mock re-exports for macros
#[cfg(feature = "unimock")]
#[doc(hidden)]
pub use ::unimock as __unimock;

#[cfg(feature = "boxed-futures")]
#[doc(hidden)]
pub mod __async_trait {
    pub use ::async_trait::async_trait;
}

#[doc(hidden)]
pub mod static_async {
    pub use entrait_macros::static_async_trait as async_trait;
}