1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
//! A proc macro to ease development using _Inversion of Control_ patterns in Rust.
//!
//! `entrait` is used to generate a trait from the definition of a regular function.
//! The main use case for this is that other functions may depend upon the trait
//! instead of the concrete implementation, enabling better test isolation.
//!
//! The macro looks like this:
//!
//! ```rust
//! # use entrait::*;
//! #[entrait(MyFunction)]
//! fn my_function<D>(deps: &D) {
//! }
//! ```
//!
//! which generates the trait `MyFunction`:
//!
//! ```rust
//! trait MyFunction {
//!     fn my_function(&self);
//! }
//! ```
//!
//! `my_function`'s first and only parameter is `deps` which is generic over some unknown type `D`.
//! This would correspond to the `self` parameter in the trait.
//! But what is this type supposed to be? We can generate an implementation in the same go, using `for Type`:
//!
//! ```rust
//! struct App;
//!
//! #[entrait::entrait(MyFunction for App)]
//! fn my_function<D>(deps: &D) {
//! }
//!
//! // Generated:
//! // trait MyFunction {
//! //     fn my_function(&self);
//! // }
//! //
//! // impl MyFunction for App {
//! //     fn my_function(&self) {
//! //         my_function(self)
//! //     }
//! // }
//!
//! fn main() {
//!     let app = App;
//!     app.my_function();
//! }
//! ```
//!
//! The advantage of this pattern comes into play when a function declares its dependencies, as _trait bounds_:
//!
//!
//! ```rust
//! # use entrait::*;
//! # struct App;
//! #[entrait(Foo for App)]
//! fn foo(deps: &(impl Bar))
//! {
//!     deps.bar();
//! }
//!
//! #[entrait(Bar for App)]
//! fn bar<D>(deps: &D) {
//! }
//! ```
//!
//! The functions may take any number of parameters, but the first one is always considered specially as the "dependency parameter".
//!
//! Functions may also be non-generic, depending directly on the App:
//!
//! ```rust
//! # use entrait::*;
//! # struct App { some_thing: SomeType };
//! # type SomeType = u32;
//! #[entrait(ExtractSomething for App)]
//! fn extract_something(app: &App) -> SomeType {
//!     app.some_thing
//! }
//! ```
//!
//! These kinds of functions may be considered "leaves" of a dependency tree.
//!
//! ## "Philosophy"
//! The idea behind `entrait` is to explore a specific architectural pattern:
//! * Interfaces with _one_ runtime implementation
//! * named traits as the interface of single functions
//!
//! `entrait` does not implement Dependency Injection (DI). DI is a strictly object-oriented concept that will often look awkward in Rust.
//! The author thinks of DI as the "reification of code modules": In a DI-enabled programming environment, code modules are grouped together
//! as _objects_ and other modules may depend upon the _interface_ of such an object by receiving some instance that implements it.
//! When this pattern is applied successively, one ends up with an in-memory dependency graph of high-level modules.
//!
//! `entrait` tries to turn this around by saying that the primary abstraction that is depended upon is a set of _functions_, not a set of code modules.
//!
//! An architectural consequence is that one ends up with _one ubiquitous type_ that represents a running application that implements all
//! these function abstraction traits. But the point is that this is all loosely coupled: Most function definitions themselves do not refer
//! to this god-like type, they only depend upon traits.
//!
//! ## `async` support
//! Since Rust at the time of writing does not natively support async methods in traits, you may opt in to having `#[async_trait]` generated
//! for your trait:
//!
//! ```rust
//! # use entrait::*;
//! #[entrait(Foo, async_trait=true)]
//! async fn foo<D>(deps: &D) {
//! }
//! ```
//! This is designed to be forwards compatible with real async fn in traits. When that day comes, you should be able to just remove the `async_trait=true`
//! to get a proper zero-cost future.
//!
//! ## Mock support
//! The macro supports autogenerating [mockall] mock structs:
//!
//! [mockall]: https://docs.rs/mockall/latest/mockall/
//!
//! ```rust
//! # use entrait::*;
//! #[entrait(Foo, mockall=true)]
//! fn foo<D>(_: &D) -> u32 {
//!     unimplemented!()
//! }
//!
//! fn my_func(deps: &(impl Foo)) -> u32 {
//!     deps.foo()
//! }
//!
//! fn main() {
//!     let mut deps = MockFoo::new();
//!     deps.expect_foo().returning(|| 42);
//!     assert_eq!(42, my_func(&deps));
//! }
//! ```
//! Using `mockall` is easy enough when there is only one trait bound, because the generated trait need only be attributed with `mockall::automock`.
//!
//! ### multiple trait bounds with `unimock`
//! With multiple trait bounds, this becomes a little harder: We need some concrete struct that implement all the given traits.
//! This is easily solved by the crate [unimock], and using `unimock = true`:
//!
//! [unimock]: https://docs.rs/unimock/latest/unimock/
//!
//! ```rust
//! # use entrait::*;
//! use unimock::Unimock;
//!
//! #[entrait(Foo, unimock=true)]
//! fn foo<D>(_: &D) -> u32 {
//!     unimplemented!()
//! }
//! #[entrait(Bar, unimock=true)]
//! fn bar<D>(_: &D) -> u32 {
//!     unimplemented!()
//! }
//!
//! fn my_func(deps: &(impl Foo + Bar)) -> u32 {
//!     deps.foo() + deps.bar()
//! }
//!
//! fn main() {
//!     let deps = Unimock::new()
//!         .mock(|foo: &mut MockFoo| {
//!             foo.expect_foo().returning(|| 40);
//!         })
//!         .mock(|bar: &mut MockBar| {
//!             bar.expect_bar().returning(|| 2);
//!         });
//!
//!     assert_eq!(42, my_func(&deps));
//! }
//! ```
//!
//! `unimock = true` implies `mockall = true`.
//!
//! ### conditional mock implementations
//! Most often, you will only need to generate mock implementations in test code, and skip this for production code. For this, there are the `= test` variants:
//!
//! * `mockall = test`
//! * `unimock = test`
//!
//! which puts the corresponding attributes in `#[cfg_attr(test, ...)]`:
//!
//! ```rust
//! # use entrait::*;
//! #[entrait(Foo, unimock=test)]
//! fn foo<D>(_: &D) -> u32 {
//!     unimplemented!()
//! }
//!
//! fn takes_foo(foo: impl Foo) {}
//!
//! fn main() {
//!     // we can still instantiate Unimock, but it's not useful,
//!     // because now it doesn't implement `Foo`:
//!     let mock = unimock::Unimock::new();
//!     //takes_foo(mock);
//!     //--------- ^^^^ the trait `Foo` is not implemented for `Unimock`
//! }
//!
//! #[test]
//! fn test() {
//!     // this compiles!
//!     let mock = unimock::Unimock::new();
//!     takes_foo(mock);
//! }
//! ```
//!
//! This is opt-in because there could be scenarios where this behaviour is not desired, e.g. when you write a library and want mocks exported for those.
//!

#![forbid(unsafe_code)]

pub use entrait_macros::entrait;