1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
//! **Command line tool to encrypt and decrypt bitcoin private keys with
//! [bip-0038](https://github.com/bitcoin/bips/blob/master/bip-0038.mediawiki) standard.**
//!
//! ## Basic usage
//!
//! ```console
//! $ encrypt38 -p Satoshi KwYgW8gcxj1JWJXhPSu4Fqwzfhp5Yfi42mdYmMa4XqK7NJxXUSK7
//! 6PYLtMnXvfG3oJde97zRyLYFZCYizPU5T3LwgdYJz1fRhh16bU7u6PPmY7
//! ```
//!
//! ```console
//! $ encrypt38 -p Satoshi 6PYLtMnXvfG3oJde97zRyLYFZCYizPU5T3LwgdYJz1fRhh16bU7u6PPmY7
//! 09c2686880095b1a4c249ee3ac4eea8a014f11e6f986d0b5025ac1f39afbd9ae
//! KwYgW8gcxj1JWJXhPSu4Fqwzfhp5Yfi42mdYmMa4XqK7NJxXUSK7
//! ```
//!
//! ## Disclaimer
//!
//! * **Don't trust, verify**
//!
//!     Compare the results of this tool with others. Verify the implementation (and the tests).
//! Decrypt immediately after an encryption to check the passphrase you *typed* was the one you
//! *wanted*. **Use at your won risk.**
//!
//! * **Not recommended**
//!
//!     Use this tool only to decrypt keys you already have. The method of keeping private keys
//! encrypted with bip-0038 standard is [not recommended](https://youtu.be/MbwLVok4gWA?t=2462)
//! anymore (use [mnemonic](https://crates.io/crates/mnemonic39) instead).
//!
//! ## Features
//!
//! * **Address**
//!
//!     This tool show the respective address of a decrypted private key in the legacy,
//! segwit-nested and segwit-native formats according to the version prefix of the encrypted
//! private key.
//!
//! * **Custom separator**
//!
//!     Customization of the default separator of information when decrypting.
//!
//! * **Decryption**
//!
//!     Insert an encrypted private key `6P...` and passphrase do show the private key represented
//! in hexadecimal and the respective address, public key and wif keys.
//!
//! * **Encryption**
//!
//!     Insert a private key in the form of hexadecimal numbers or wif key and passphrase to show
//! the encrypted private key.
//!
//! * **Generation (elliptic curve multiplication method)**
//!
//!     Insert a passphrase to create an encrypted private key using pseudo-random number generation
//! and elliptic curve multiplication.
//!
//! * **Uncompressed address**
//!
//!     This tool is capable of resulting in uncompressed address (mainly for decryption and retro
//! compatibility, *not recommended*).
//!
//! ## Help
//!
//! ```bash
//! encrypt38 1.1.1
//! Insert encrypted, hexadecimal or wif private key and passphrase to decrypt or
//! encrypt accordingly. Insert only passphrase to create an encrypted private key
//! using elliptic curve multiplication (and pseudo-random number generation).
//!
//! USAGE:
//!     encrypt38 [FLAGS] [OPTIONS] -p <passphrase> [PRIVATE_KEY]
//!
//! FLAGS:
//!     -h, --help            Prints help information
//!     -u, --uncompressed    Encrypted private key to generate uncompressed address
//!     -V, --version         Prints version information
//!     -v, --verbose         Show possible address and public key when decrypting
//!
//! OPTIONS:
//!     -p <passphrase>        Used to encrypt and decrypt the private key (required)
//!     -s <separator>         Specify character (or string) to separate verbose result
//!
//! ARGS:
//!     <PRIVATE_KEY>    Hexadecimal, wif or encrypted private key
//! ```
//!
//! ## Recommendation
//!
//! * **Build and test**
//!
//!     Always use the flag `--release` in `cargo` even for running tests. The encryption algorithm
//! is intended to be heavy on cpu so, without the optimizations of a release build, running the
//! tests will be a slow process. With `--release` all tests are done in seconds.

use bech32::ToBase32;
use bip38::{Encrypt, Decrypt, Generate};
use clap::{App, Arg, ArgMatches, crate_version};
use ripemd160::Ripemd160;
use secp256k1::{Secp256k1, SecretKey, PublicKey};
use sha2::Digest;

/// Information to user.
const ABOUT: &str =
"Insert encrypted, hexadecimal or wif private key and passphrase to decrypt or
encrypt accordingly. Insert only passphrase to create an encrypted private key
using elliptic curve multiplication (and pseudo-random number generation).";

/// Number of characters of an encrypted private key.
const LEN_EKEY: usize = 58;

/// Number of characters in wif compressed secret key.
const LEN_WIF_C: usize = 52;

/// Number of characters in wif uncompressed secret key.
const LEN_WIF_U: usize = 51;

/// Number of bytes of a public key compressed.
const NBBY_PUBC: usize = 33;

/// Number of bytes of a public key uncompressed.
const NBBY_PUBU: usize = 65;

/// Number of bytes (payload only) contained in a decoded wif compressed key.
const NBBY_WIFC: usize = 34;

/// Number of bytes (payload only) contained in a decoded wif uncompressed key.
const NBBY_WIFU: usize = 33;

/// Byte of 'OP_0' in the Script language.
const OP_0: u8 = 0x00;

/// Byte to push the next 20 bytes in the Script language.
const OP_PUSH20: u8 = 0x14;

/// Prefix of all private keys encrypted with bip-0038 standard.
const PRE_EKEY: &str = "6P";

/// Prefix of all ec encrypted keys.
const PRE_EC: [u8; 2] = [0x01, 0x43];

/// Prefix of all non ec encrypted keys.
const PRE_NON_EC: [u8; 2] = [0x01, 0x42];

/// Prefix of all p2wpkh-p2sh address in main net.
const PRE_P2WPKH_P2SH_B: u8 = 0x05;

/// First two possible characters of wif compressed.
const PRE_WIF_C: &str = "KL";

/// First byte of all wif encoded secret keys.
const PRE_WIF_B: u8 = 0x80;

/// First character of wif uncompressed.
const PRE_WIF_U: &str = "5";

/// Default string used to separate resulting information.
const SEP_DEFAULT: &str = " | ";

/// Prefix of all warning output messages;
const WARN: &str = "\x1b[33m\x1b[1mwarning\x1b[m: ";

/// Errors of 'encrypt38' project.
#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq, PartialOrd)]
#[doc(hidden)]
pub enum Error {
    /// If an invalid base 58 string is processed.
    Base58,
    /// Bech32 error.
    Bech32,
    /// Error provenient of the bip38 dependency
    Bip38(bip38::Error),
    /// Invalid checksum was found.
    Check,
    /// Found invalid encrypted private key.
    EncKey,
    /// Flag 'u' invalid in the context (encrypted or wif private keys).
    FlagU,
    /// Found invalid hexadecimal representation of an secret key.
    HexKey,
    /// Found invalid hexadecimal value represented in string.
    HexStr,
    /// Showed if an invalid argument is found.
    InvArg,
    /// Invalid number of public key bytes.
    NbPubB,
    /// Error while parsing the arguments.
    Parser,
    /// Input is not valid encrypted, hexadecimal or wif private key.
    Prvk,
    /// Invalid secret entropy was found (could not generate address).
    SecEnt,
    /// Invalid wif secret key.
    WifKey
}

/// Functions to manipulate data in form of arbitrary number of bytes [u8].
trait BytesManipulation {
    /// Encode target arbitrary number of bytes in base 58 check.
    fn encode_base58ck(&self) -> String;

    /// Sha256 and ripemd160 in sequence.
    fn hash160(&self) -> [u8; 20];

    /// Receives a arbitrary number of bytes and return 32 bytes of a dual sha256 hash of them.
    fn hash256(&self) -> [u8; 32];

    /// Receives bytes and return a string of hexadecimal characters.
    fn hex_string(&self) -> String;

    /// Create an p2wpkh address according to inserted self key bytes.
    fn p2wpkh(&self) -> Result<String, Error>;
}

/// Functions to manipulate private keys (32 bytes).
trait PrivateKeyManipulation {
    /// Generate secp256k1 point based on target secret key.
    fn public(&self, compress: bool) -> Result<Vec<u8>, Error>;

    /// Generate a representation of secret key in wif format.
    fn wif(&self, compress: bool) -> String;
}

/// Functions to manipulate compressed public keys (33 bytes).
trait PublicKeyCompressedManipulation {
    /// Generate an segwit address of a compressed public key.
    fn segwit_p2wpkh(&self) -> Result<String, Error>;

    /// Generate an segwit address according to informed compressed public key.
    fn segwit_p2wpkh_p2sh(&self) -> Result<String, Error>;
}

/// Functions to manipulate strings.
trait StringManipulation {
    /// Decode informed base 58 string into bytes (payload only).
    fn decode_base58ck(&self) -> Result<Vec<u8>, Error>;

    /// Decode a secret key encoded in base 58 returning bytes and compression.
    fn decode_wif(&self) -> Result<([u8; 32], bool), Error>;

    /// Transform string of hexadecimal characters into a vector of bytes.
    fn hex_bytes(&self) -> Result<Vec<u8>, Error>;

    /// Test if an string of arbitrary length contains only hexadecimal chars.
    fn is_hex(&self) -> bool;

    /// Show decryption of target string in command line interface.
    fn show_decrypt(&self, pass: &str, separator: &str, verbose: bool) -> Result<(), Error>;

    /// Show encryption of target string in command line interface.
    fn show_encrypt(&self, pass: &str, compress: bool) -> Result<(), Error>;
}

impl core::fmt::Display for Error {
    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
        match self {
            Error::Base58 => write!(f, "invalid base58 string"),
            Error::Bech32 => write!(f, "invalid bech32 data"),
            Error::Bip38(err) => write!(f, "{}", err),
            Error::Check => write!(f, "invalid checksum"),
            Error::EncKey => write!(f, "invalid encrypted private key"),
            Error::FlagU =>
                write!(f, "flag '\x1b[33muncompressed\x1b[m' invalid in this context (aborted)"),
            Error::HexKey => write!(f, "invalid hexadecimal private key"),
            Error::HexStr => write!(f, "invalid hexadecimal string"),
            Error::InvArg => write!(f, "invalid argument"),
            Error::NbPubB => write!(f, "invalid number of public bytes"),
            Error::Parser => write!(f, "fatal problem while parsing arguments"),
            Error::Prvk => write!(f, "not an encrypted, hexadecimal or wif private key"),
            Error::SecEnt => write!(f, "invalid secret entropy"),
            Error::WifKey => write!(f, "invalid wif secret key")
        }
    }
}

impl From<bip38::Error> for Error {
    fn from(err: bip38::Error) -> Self {
        Error::Bip38(err)
    }
}

/// Implementation of trait BytesManipulation.
impl BytesManipulation for [u8] {
    #[inline]
    fn encode_base58ck(&self) -> String {
        let mut decoded: Vec<u8> = self.to_vec();
        decoded.append(&mut decoded.hash256()[..4].to_vec());
        bs58::encode(decoded).into_string()
    }

    #[inline]
    fn hash160(&self) -> [u8; 20] {
        let mut result = [0x00; 20];
        result[..].copy_from_slice(&Ripemd160::digest(&sha2::Sha256::digest(self)));
        result
    }

    #[inline]
    fn hash256(&self) -> [u8; 32] {
        let mut result = [0x00; 32];
        result[..].copy_from_slice(&sha2::Sha256::digest(&sha2::Sha256::digest(self)));
        result
    }

    #[inline]
    fn hex_string(&self) -> String {
        let mut result = String::new();
        for byte in self {
            result = format!("{}{:02x}", result, byte);
        }
        result
    }

    #[inline]
    fn p2wpkh(&self) -> Result<String, Error> {
        if self.len() != NBBY_PUBC && self.len() != NBBY_PUBU { return Err(Error::NbPubB); }
        let mut address_bytes = vec![0x00];
        address_bytes.append(&mut self.hash160().to_vec());
        Ok(address_bytes.encode_base58ck())
    }
}

/// Implementation of trait PrivateKeyManipulation.
impl PrivateKeyManipulation for [u8; 32] {
    #[inline]
    fn public(&self, compress: bool) -> Result<Vec<u8>, Error> {
        let secp_pub = PublicKey::from_secret_key(
            &Secp256k1::new(),
            &SecretKey::from_slice(self).map_err(|_| Error::SecEnt)?
        );
        if compress {
            Ok(secp_pub.serialize().to_vec())
        } else {
            Ok(secp_pub.serialize_uncompressed().to_vec())
        }
    }

    #[inline]
    fn wif(&self, compress: bool) -> String {
        let mut decoded: Vec<u8> = vec![PRE_WIF_B];
        decoded.append(&mut self.to_vec());
        if compress { decoded.push(0x01); }
        decoded.encode_base58ck()
    }
}

/// Implementation of trait PublicKeyCompressedManipulation.
impl PublicKeyCompressedManipulation for [u8; NBBY_PUBC] {
    #[inline]
    fn segwit_p2wpkh(&self) -> Result<String, Error> {
        // segwit version has to be inserted as 5 bit unsigned integer
        let mut decoded_u5 = vec![bech32::u5::try_from_u8(0).map_err(|_| Error::Bech32)?];
        decoded_u5.append(&mut self.hash160().to_base32());
        let encoded = bech32::encode("bc", decoded_u5, bech32::Variant::Bech32)
            .map_err(|_| Error::Bech32)?;
        Ok(encoded)
    }

    #[inline]
    fn segwit_p2wpkh_p2sh(&self) -> Result<String, Error> {
        let mut redeem_script = vec![OP_0, OP_PUSH20];
        redeem_script.append(&mut self.hash160().to_vec());
        let mut address_bytes = vec![PRE_P2WPKH_P2SH_B];
        address_bytes.append(&mut redeem_script.hash160().to_vec());
        Ok(address_bytes.encode_base58ck())
    }
}

/// Implementation of trait StringManipulation.
impl StringManipulation for str {
    #[inline]
    fn decode_base58ck(&self) -> Result<Vec<u8>, Error> {
        let raw = bs58::decode(self).into_vec().map_err(|_| Error::Base58)?;
        if raw[raw.len() - 4..] == raw[..raw.len() - 4].hash256()[..4] {
            Ok(raw[..(raw.len() - 4)].to_vec())
        } else {
            Err(Error::Check)
        }
    }

    #[inline]
    fn decode_wif(&self) -> Result<([u8; 32], bool), Error> {
        if (!self.is_char_boundary(1) || !PRE_WIF_C.contains(&self[..1]) ||
            self.len() != LEN_WIF_C) && (!self.starts_with(PRE_WIF_U) || self.len() != LEN_WIF_U) {
            return Err(Error::WifKey);
        }
        let raw_bytes = self.decode_base58ck()?;
        if (raw_bytes.len() != NBBY_WIFC && raw_bytes.len() != NBBY_WIFU) ||
            raw_bytes[0] != PRE_WIF_B {
            return Err(Error::WifKey)
        }
        let mut result = [0x00; 32];
        result[..].copy_from_slice(&raw_bytes[1..33]);
        Ok((result, raw_bytes.len() == NBBY_WIFC))
    }

    #[inline]
    fn hex_bytes(&self) -> Result<Vec<u8>, Error> {
        let mut out = Vec::new();
        for index in (0..self.len()).step_by(2) {
            out.push(u8::from_str_radix(&self[index..index + 2], 16).map_err(|_| Error::HexStr)?);
        }
        Ok(out)
    }

    #[inline]
    fn is_hex(&self) -> bool {
        for c in self.chars() {
            if !c.is_ascii_hexdigit() {
                return false;
            }
        }
        true
    }

    #[inline]
    fn show_decrypt(&self, pass: &str, separator: &str, verbose: bool) -> Result<(), Error> {
        let decoded = self.decode_base58ck()?;
        let (prvk, compress) = if decoded[..2] == PRE_NON_EC || decoded[..2] == PRE_EC {
            self.decrypt(pass)?
        } else {
            return Err(Error::EncKey);
        };

        let prvk_hex = prvk.hex_string();
        let wif = prvk.wif(compress);
        
        if verbose {
            let pubk = prvk.public(compress)?;
            if compress {
                let mut pubk_c = [0x00; NBBY_PUBC];
                pubk_c[..].copy_from_slice(&pubk);
                let pubk_hex = pubk_c.hex_string();
                if separator == SEP_DEFAULT {
                    println!(
                        "{}\n{:42}{}{}{}{}\n{:42}{}{}{}{}\n{}{}{}{}{}",
                        prvk_hex,
                        pubk_c.p2wpkh()?,
                        separator,
                        pubk_hex,
                        separator,
                        wif,
                        pubk_c.segwit_p2wpkh_p2sh()?,
                        separator,
                        pubk_hex,
                        separator,
                        wif,
                        pubk_c.segwit_p2wpkh()?,
                        separator,
                        pubk_hex,
                        separator,
                        wif,
                    );
                } else {
                    println!(
                        "{}\n{}{}{}{}{}\n{}{}{}{}{}\n{}{}{}{}{}",
                        prvk_hex,
                        pubk_c.p2wpkh()?,
                        separator,
                        pubk_hex,
                        separator,
                        wif,
                        pubk_c.segwit_p2wpkh_p2sh()?,
                        separator,
                        pubk_hex,
                        separator,
                        wif,
                        pubk_c.segwit_p2wpkh()?,
                        separator,
                        pubk_hex,
                        separator,
                        wif,
                    );
                }
            } else {
                println!(
                    "{}\n{}{}{}{}{}",
                    prvk_hex,
                    pubk.p2wpkh()?,
                    separator,
                    pubk.hex_string(),
                    separator,
                    wif
                );
            }
        } else {
            println!("{}\n{}", prvk_hex, wif);
        }
        Ok(())
    }

    #[inline]
    fn show_encrypt(&self, pass: &str, compress: bool) -> Result<(), Error> {
        let eprvk = if self.is_empty() {
            pass.generate(compress).map_err(|_| Error::Prvk)?
        } else if self.is_char_boundary(1) &&
            (PRE_WIF_C.contains(&self[..1]) || self.starts_with(PRE_WIF_U)) {
            if self.len() == LEN_WIF_C || self.len() == LEN_WIF_U {
                if !compress { return Err(Error::FlagU); }
                let (prvk, compress) = self.decode_wif()?;
                prvk.encrypt(pass, compress)?
            } else {
                return Err(Error::WifKey);
            }
        } else if self.is_hex() {
            if self.len() == 64 {
                let mut prvk = [0x00; 32];
                prvk[..].copy_from_slice(&self.hex_bytes()?);
                prvk.encrypt(pass, compress)?
            } else {
                return Err(Error::HexKey);
            }
        } else {
            return Err(Error::InvArg);
        };
        println!("{}", eprvk);
        Ok(())
    }
}

/// Treat arguments informed by user and act accordingly.
#[doc(hidden)]
pub fn handle_arguments(matches: ArgMatches) -> Result<(), Error> {
    let compress = !matches.is_present("uncompressed");
    let separator = matches.value_of("separator").unwrap_or(SEP_DEFAULT);
    let pass = matches.value_of("passphrase").ok_or(Error::Parser)?;
    let prv = matches.value_of("PRIVATE_KEY").unwrap_or(""); // not required

    if !compress && prv.starts_with(PRE_EKEY) {
        return Err(Error::FlagU);
    } else if prv.len() == LEN_EKEY && prv.starts_with(PRE_EKEY) {
        prv.show_decrypt(pass, separator, matches.is_present("verbose"))?;
    } else {
        if matches.is_present("verbose") {
            eprintln!("{}flag '\x1b[33mverbose\x1b[m' invalid in this context (ignored)", WARN );

            if separator != SEP_DEFAULT {
                eprintln!(
                    "{}option '\x1b[33mseparator\x1b[m' invalid in this context (ignored)", WARN
                );
            }
        }
        prv.show_encrypt(pass, compress)?;
    }
    Ok(())
}

/// Create the default clap app for the project
#[doc(hidden)]
pub fn init_clap() -> App<'static, 'static> {
    App::new("encrypt38")
        .about(ABOUT)
        .arg(
            Arg::with_name("PRIVATE_KEY")
                .help("Hexadecimal, wif or encrypted private key")
                .takes_value(true)
                .validator(validate_prvk)
        ).arg(
            Arg::with_name("separator")
                .help("Specify character (or string) to separate verbose result")
                .requires("verbose")
                .short("s")
                .takes_value(true)
        ).arg(
            Arg::with_name("passphrase")
                .help("Used to encrypt and decrypt the private key (required)")
                .required(true)
                .short("p")
                .takes_value(true)
        ).arg(
            Arg::with_name("uncompressed")
                .help("Encrypted private key to generate uncompressed address")
                .long("uncompressed")
                .short("u")
                .takes_value(false)
        ).arg(
            Arg::with_name("verbose")
                .help("Show possible address and public key when decrypting")
                .long("verbose")
                .short("v")
        ).version(crate_version!())
}

/// Validate if provided string is one of the types of private keys supported.
fn validate_prvk(prvk: String) -> Result<(), String> {
    if (prvk.len() == LEN_EKEY && prvk.starts_with(PRE_EKEY)) ||
        (prvk.len() == 64 && prvk.is_hex()) || (prvk.is_char_boundary(1) &&
        (prvk.len() == LEN_WIF_C && PRE_WIF_C.contains(&prvk[..1]) ||
         prvk.len() == LEN_WIF_U && prvk.starts_with(PRE_WIF_U))) {
        Ok(())
    } else {
        Err(Error::Prvk.to_string())
    }
}

/// Tests for functions of this library.
#[cfg(test)]
mod tests {
    use super::*;

    /// Bytes of a double sha256 digest of character 'a'.
    const A_2R: [u8; 32] = [
        0xbf, 0x5d, 0x3a, 0xff, 0xb7, 0x3e, 0xfd, 0x2e, 0xc6, 0xc3, 0x6a, 0xd3, 0x11, 0x2d, 0xd9,
        0x33, 0xef, 0xed, 0x63, 0xc4, 0xe1, 0xcb, 0xff, 0xcf, 0xa8, 0x8e, 0x27, 0x59, 0xc1, 0x44,
        0xf2, 0xd8
    ];

    /// Bytes of a sha256 and ripemd160 of character 'a'.
    const A_H: [u8; 20] = [
        0x99, 0x43, 0x55, 0x19, 0x9e, 0x51, 0x6f, 0xf7, 0x6c, 0x4f, 0xa4, 0xaa, 0xb3, 0x93, 0x37,
        0xb9, 0xd8, 0x4c, 0xf1, 0x2b
    ];

    /// Compressed address with secret key of all bytes '0x11'
    const P2WPKH_C_1: &str = "1Q1pE5vPGEEMqRcVRMbtBK842Y6Pzo6nK9";

    /// Compressed address that generated with 'secret' entropy.
    const P2WPKH_C_A: &str = "16JrGhLx5bcBSA34kew9V6Mufa4aXhFe9X";

    /// Compressed address with secret key of all bytes '0x69'.
    const P2WPKH_C_L: &str = "1N7qxowv8SnfdBYhmvpxZxyjsYQDPd88ES";

    /// Uncompressed address generated with entropy of 32 '0x11' bytes.
    const P2WPKH_U_1: &str = "1MsHWS1BnwMc3tLE8G35UXsS58fKipzB7a";

    /// Uncompressed address generated with 'secret' entropy.
    const P2WPKH_U_A: &str = "19P1LctLQmH6tuHCRkv8QznNBGBvFCyKxi";

    /// Uncompressed address generated with entropy of 32 '0x69' bytes.
    const P2WPKH_U_L: &str = "17iS4e5ib2t2Bj2UFjPbxSDdmecHNnCAwy";

    /// 'Secret' entropy to generate address.
    const P2WPKH_B: [u8; 32] = [
        0xa9, 0x66, 0xeb, 0x60, 0x58, 0xf8, 0xec, 0x9f, 0x47, 0x07, 0x4a, 0x2f, 0xaa, 0xdd, 0x3d,
        0xab, 0x42, 0xe2, 0xc6, 0x0e, 0xd0, 0x5b, 0xc3, 0x4d, 0x39, 0xd6, 0xc0, 0xe1, 0xd3, 0x2b,
        0x8b, 0xdf
    ];

    /// Segwit p2wpkh-p2sh address with all secret bytes '0x11'.
    const P2WPKH_P2SH_1: &str = "3PFpzMLrKWsphFtc8BesF3MGPnimKMuF4x";

    /// Segwit p2wpkh-p2sh address with 'secret' entropy.
    const P2WPKH_P2SH_A: &str = "34N3tf5m5rdNhW5zpTXNEJucHviFEa8KEq";

    /// Segwit p2wpkh-p2sh address with all secret bytes '0x69'.
    const P2WPKH_P2SH_L: &str = "35E9BxrEWjgHDFWucazLK5VVxH5oGLRj4g";

    /// Bytes of compressed public key generated with all bytes '0x11'.
    const PUB_C_1: [u8; NBBY_PUBC] = [
        0x03, 0x4f, 0x35, 0x5b, 0xdc, 0xb7, 0xcc, 0x0a, 0xf7, 0x28, 0xef, 0x3c, 0xce, 0xb9, 0x61,
        0x5d, 0x90, 0x68, 0x4b, 0xb5, 0xb2, 0xca, 0x5f, 0x85, 0x9a, 0xb0, 0xf0, 0xb7, 0x04, 0x07,
        0x58, 0x71, 0xaa
     ];

    /// Bytes of compressed public key generated with 'P2PKG_B' secret.
    const PUB_C_A: [u8; NBBY_PUBC] = [
        0x02, 0x3c, 0xba, 0x1f, 0x4d, 0x12, 0xd1, 0xce, 0x0b, 0xce, 0xd7, 0x25, 0x37, 0x37, 0x69,
        0xb2, 0x26, 0x2c, 0x6d, 0xaa, 0x97, 0xbe, 0x6a, 0x05, 0x88, 0xcf, 0xec, 0x8c, 0xe1, 0xa5,
        0xf0, 0xbd, 0x09
    ];

    /// Bytes of compressed public key generated with all bytes '0x69'.
    const PUB_C_L: [u8; NBBY_PUBC] = [
        0x02, 0x66, 0x6b, 0xdf, 0x20, 0x25, 0xe3, 0x2f, 0x41, 0x08, 0x88, 0x99, 0xf2, 0xbc, 0xb4,
        0xbf, 0x69, 0x83, 0x18, 0x7f, 0x38, 0x0e, 0x72, 0xfc, 0x7d, 0xee, 0x11, 0x5b, 0x1f, 0x99,
        0x57, 0xcc, 0x72
     ];

    /// Bytes of uncompressed public key generated with all bytes '0x11'.
    const PUB_U_1: [u8; NBBY_PUBU] = [
        0x04, 0x4f, 0x35, 0x5b, 0xdc, 0xb7, 0xcc, 0x0a, 0xf7, 0x28, 0xef, 0x3c, 0xce, 0xb9, 0x61,
        0x5d, 0x90, 0x68, 0x4b, 0xb5, 0xb2, 0xca, 0x5f, 0x85, 0x9a, 0xb0, 0xf0, 0xb7, 0x04, 0x07,
        0x58, 0x71, 0xaa, 0x38, 0x5b, 0x6b, 0x1b, 0x8e, 0xad, 0x80, 0x9c, 0xa6, 0x74, 0x54, 0xd9,
        0x68, 0x3f, 0xcf, 0x2b, 0xa0, 0x34, 0x56, 0xd6, 0xfe, 0x2c, 0x4a, 0xbe, 0x2b, 0x07, 0xf0,
        0xfb, 0xdb, 0xb2, 0xf1, 0xc1
     ];

    /// Bytes of uncompressed public key generated with 'P2PKG_B' secret.
    const PUB_U_A: [u8; NBBY_PUBU] = [
        0x04, 0x3c, 0xba, 0x1f, 0x4d, 0x12, 0xd1, 0xce, 0x0b, 0xce, 0xd7, 0x25, 0x37, 0x37, 0x69,
        0xb2, 0x26, 0x2c, 0x6d, 0xaa, 0x97, 0xbe, 0x6a, 0x05, 0x88, 0xcf, 0xec, 0x8c, 0xe1, 0xa5,
        0xf0, 0xbd, 0x09, 0x2f, 0x56, 0xb5, 0x49, 0x2a, 0xdb, 0xfc, 0x57, 0x0b, 0x15, 0x64, 0x4c,
        0x74, 0xcc, 0x8a, 0x48, 0x74, 0xed, 0x20, 0xdf, 0xe4, 0x7e, 0x5d, 0xce, 0x2e, 0x08, 0x60,
        0x1d, 0x6f, 0x11, 0xf5, 0xa4
    ];

    /// Bytes of uncompressed public key generated with all bytes '0x69'.
    const PUB_U_L: [u8; NBBY_PUBU] = [
        0x04, 0x66, 0x6b, 0xdf, 0x20, 0x25, 0xe3, 0x2f, 0x41, 0x08, 0x88, 0x99, 0xf2, 0xbc, 0xb4,
        0xbf, 0x69, 0x83, 0x18, 0x7f, 0x38, 0x0e, 0x72, 0xfc, 0x7d, 0xee, 0x11, 0x5b, 0x1f, 0x99,
        0x57, 0xcc, 0x72, 0x9d, 0xd9, 0x76, 0x13, 0x1c, 0x4c, 0x8e, 0x12, 0xab, 0x10, 0x83, 0xca,
        0x06, 0x54, 0xca, 0x5f, 0xdb, 0xca, 0xc8, 0xd3, 0x19, 0x8d, 0xaf, 0x90, 0xf5, 0x81, 0xb5,
        0x91, 0xd5, 0x63, 0x79, 0xca
     ];

    /// Segwit address generated with secret of all bytes '0x11'
    const SEGW_1: &str = "bc1ql3e9pgs3mmwuwrh95fecme0s0qtn2880lsvsd5";

    /// Segwit address generated with 'secret' number.
    const SEGW_A: &str = "bc1q8gudgnt2pjxshwzwqgevccet0eyvwtswt03nuy";

    /// Segwit address generated with secret of all bytes '0x69'
    const SEGW_L: &str = "bc1qu7nqysur9dr49e4vd9xvguwh5ewzft597d8mc7";

    /// Encrypted secret keys acquired on test vectors of bip-0038.
    const TV_38_ENCRYPTED: [&str; 9] = [
        "6PRVWUbkzzsbcVac2qwfssoUJAN1Xhrg6bNk8J7Nzm5H7kxEbn2Nh2ZoGg",
        "6PRNFFkZc2NZ6dJqFfhRoFNMR9Lnyj7dYGrzdgXXVMXcxoKTePPX1dWByq",
        "6PRW5o9FLp4gJDDVqJQKJFTpMvdsSGJxMYHtHaQBF3ooa8mwD69bapcDQn",
        "6PYNKZ1EAgYgmQfmNVamxyXVWHzK5s6DGhwP4J5o44cvXdoY7sRzhtpUeo",
        "6PYLtMnXvfG3oJde97zRyLYFZCYizPU5T3LwgdYJz1fRhh16bU7u6PPmY7",
        "6PfQu77ygVyJLZjfvMLyhLMQbYnu5uguoJJ4kMCLqWwPEdfpwANVS76gTX",
        "6PfLGnQs6VZnrNpmVKfjotbnQuaJK4KZoPFrAjx1JMJUa1Ft8gnf5WxfKd",
        "6PgNBNNzDkKdhkT6uJntUXwwzQV8Rr2tZcbkDcuC9DZRsS6AtHts4Ypo1j",
        "6PgGWtx25kUg8QWvwuJAgorN6k9FbE25rv5dMRwu5SKMnfpfVe5mar2ngH"
    ];

    /// Passphrases acquired on test vectors of bip-0038.
    const TV_38_PASS: [&str; 9] = [
        "TestingOneTwoThree",
        "Satoshi",
        "\u{03d2}\u{0301}\u{0000}\u{010400}\u{01f4a9}",
        "TestingOneTwoThree",
        "Satoshi",
        "TestingOneTwoThree",
        "Satoshi",
        "MOLON LABE",
        "ΜΟΛΩΝ ΛΑΒΕ"
    ];

    /// First resulting wif key obtained in test vector of bip-0038.
    const TV_38_WIF: [&str; 9] = [
        "5KN7MzqK5wt2TP1fQCYyHBtDrXdJuXbUzm4A9rKAteGu3Qi5CVR",
        "5HtasZ6ofTHP6HCwTqTkLDuLQisYPah7aUnSKfC7h4hMUVw2gi5",
        "5Jajm8eQ22H3pGWLEVCXyvND8dQZhiQhoLJNKjYXk9roUFTMSZ4",
        "L44B5gGEpqEDRS9vVPz7QT35jcBG2r3CZwSwQ4fCewXAhAhqGVpP",
        "KwYgW8gcxj1JWJXhPSu4Fqwzfhp5Yfi42mdYmMa4XqK7NJxXUSK7",
        "5K4caxezwjGCGfnoPTZ8tMcJBLB7Jvyjv4xxeacadhq8nLisLR2",
        "5KJ51SgxWaAYR13zd9ReMhJpwrcX47xTJh2D3fGPG9CM8vkv5sH",
        "5JLdxTtcTHcfYcmJsNVy1v2PMDx432JPoYcBTVVRHpPaxUrdtf8",
        "5KMKKuUmAkiNbA3DazMQiLfDq47qs8MAEThm4yL8R2PhV1ov33D"
    ];

    /// WIF secret key with payload of all bytes '0x11'.
    const WIF_1: &str = "5HwoXVkHoRM8sL2KmNRS217n1g8mPPBomrY7yehCuXC1115WWsh";

    /// WIF secret key with payload of 'secret' entropy.
    const WIF_A: &str = "5K6tjEYPunJtSHRbWLSWtYGXmeFW4UJStKb3RUo5VUqQtksHkze";

    /// WIF secret key with payload of all bytes '0x69'.
    const WIF_L: &str = "5JciBbkdYdjKKE9rwZ7c1XscwwcLBbv9aJyeZeWQi2gZnHeiX57";

    /// WIF compressed secret key with all bytes '0x11'.
    const WIC_1: &str = "KwntMbt59tTsj8xqpqYqRRWufyjGunvhSyeMo3NTYpFYzZbXJ5Hp";

    /// WIF compressed secret key of 'secret' entropy.
    const WIC_A: &str = "L2u1KQma7xyx2bVZJUocvV1Yp3R1GKW1FX3Fh3gNphrgTDVqp1sG";

    /// WIF compressed secret key with all bytes '0x69'.
    const WIC_L: &str = "KzkcmnPaJd7mqT47Rnk9XMGRfW2wfo7ar2M2o6Yoe6Rdgbg2bHM9";

    #[test]
    fn test_decode_base58ck() {
        assert_eq!(&"C2dGTwc".decode_base58ck().unwrap(), "a".as_bytes());
        assert_eq!(&"4h3c6RH52R".decode_base58ck().unwrap(), "abc".as_bytes());
    }

    #[test]
    fn test_decode_wif() {
        assert_eq!(WIC_1.decode_wif().unwrap(), ([0x11; 32], true));
        assert_eq!(WIC_L.decode_wif().unwrap(), ([0x69; 32], true));
        assert_eq!(WIF_1.decode_wif().unwrap(), ([0x11; 32], false));
        assert_eq!(WIF_L.decode_wif().unwrap(), ([0x69; 32], false));
        assert_eq!([WIF_L, "a"].concat().decode_wif().unwrap_err(), Error::WifKey);
        assert_eq!(WIC_L.replace("dgbg", "dgdg").decode_wif().unwrap_err(), Error::Check);
        assert_eq!(["a"; 51].concat().decode_wif().unwrap_err(), Error::WifKey);
        assert_eq!(["a"; 52].concat().decode_wif().unwrap_err(), Error::WifKey);
    }

    #[test]
    fn test_encode_base58ck() {
        assert_eq!("a".as_bytes().encode_base58ck(), "C2dGTwc");
        assert_eq!("abc".as_bytes().encode_base58ck(), "4h3c6RH52R");
    }

    #[test]
    fn test_handle_arguments() {
        assert!(
            handle_arguments(init_clap().get_matches_from(vec!["", "-p", "バンドメイド"])).is_ok()
        );
        assert!(
            handle_arguments(init_clap().get_matches_from(vec!["", "-up", "くるっぽー!"])).is_ok()
        );
        assert!(
            handle_arguments(
                init_clap().get_matches_from(
                    vec!["", TV_38_ENCRYPTED[3], "-p", TV_38_PASS[3]]
                )
            ).is_ok()
        );
        assert!(
            handle_arguments(
                init_clap().get_matches_from(
                    vec!["", TV_38_WIF[3], "-p", TV_38_PASS[3]]
                )
            ).is_ok()
        );
    }

    #[test]
    fn test_hash160() {
        assert_eq!("a".as_bytes().hash160(), A_H);
    }

    #[test]
    fn test_hash256() {
        assert_eq!("a".as_bytes().hash256(), A_2R);
    }

    #[test]
    fn test_hex_bytes() {
        assert_eq!("babaca".hex_bytes().unwrap(), [0xba, 0xba, 0xca]);
        assert_eq!("BABACA".hex_bytes().unwrap(), [0xba, 0xba, 0xca]);
    }

    #[test]
    fn test_hex_string() {
        assert_eq!([0xba, 0xba, 0xca].hex_string(), String::from("babaca"));
    }

    #[test]
    fn test_init_clap() {
        assert!(init_clap().get_matches_from_safe(vec!["", "-p", TV_38_PASS[3]]).is_ok());
        assert!(
            init_clap().get_matches_from_safe(
                vec!["", TV_38_ENCRYPTED[3], "-p", TV_38_PASS[3]]
            ).is_ok()
        );
        assert!(
            init_clap().get_matches_from_safe(vec!["", TV_38_WIF[0], "-p", TV_38_PASS[0]]).is_ok()
        );
        assert!(
            init_clap().get_matches_from_safe(
                vec!["", &["a"; 64].concat(), "-p", TV_38_PASS[0]]
            ).is_ok()
        );
        assert!(init_clap().get_matches_from_safe(vec![""]).is_err());
        assert!(init_clap().get_matches_from_safe(vec!["", "don't"]).is_err());
        assert!(
            init_clap().get_matches_from_safe(
                vec!["", "something_wrong", "-p", TV_38_PASS[0]]
            ).is_err()
        );
        assert!(
            init_clap().get_matches_from_safe(
                vec!["", &TV_38_ENCRYPTED[0][..LEN_EKEY - 1], "-p", TV_38_PASS[0]]
            ).is_err()
        );
        assert!(
            init_clap().get_matches_from_safe(
                vec!["", "5_wrong_uncompressed_wif", "-p", TV_38_PASS[0]]
            ).is_err()
        );
        assert!(
            init_clap().get_matches_from_safe(
                vec!["", "K_wrong_compressed_wif", "-p", TV_38_PASS[0]]
            ).is_err()
        );
        assert!(
            init_clap().get_matches_from_safe(
                vec!["", &["a"; 63].concat(), "-p", TV_38_PASS[0]]
            ).is_err()
        );
        assert!(
            init_clap().get_matches_from_safe(
                vec!["", &["a"; 65].concat(), "-p", TV_38_PASS[0]]
            ).is_err()
        );
    }

    #[test]
    fn test_is_hex() {
        assert!("0123456789abcdf".is_hex());
        assert!("ABCDEF".is_hex());
        assert!(!"ghijkl".is_hex());
        assert!(!"'!@#$%&*;:><?".is_hex());
    }

    #[test]
    fn test_p2wpkh() {
        assert_eq!(PUB_C_1.p2wpkh().unwrap(), P2WPKH_C_1);
        assert_eq!(PUB_C_A.p2wpkh().unwrap(), P2WPKH_C_A);
        assert_eq!(PUB_C_L.p2wpkh().unwrap(), P2WPKH_C_L);
        assert_eq!(PUB_U_1.p2wpkh().unwrap(), P2WPKH_U_1);
        assert_eq!(PUB_U_A.p2wpkh().unwrap(), P2WPKH_U_A);
        assert_eq!(PUB_U_L.p2wpkh().unwrap(), P2WPKH_U_L);
        assert_eq!(PUB_C_L[1..].p2wpkh().unwrap_err(), Error::NbPubB);
        assert_eq!(PUB_U_L[1..].p2wpkh().unwrap_err(), Error::NbPubB);
    }

    #[test]
    fn test_public() {
        assert_eq!(P2WPKH_B.public(true).unwrap(), PUB_C_A);
        assert_eq!([0x11; 32].public(true).unwrap(), PUB_C_1);
        assert_eq!([0x69; 32].public(true).unwrap(), PUB_C_L);
        assert_eq!(P2WPKH_B.public(false).unwrap(), PUB_U_A);
        assert_eq!([0x11; 32].public(false).unwrap(), PUB_U_1);
        assert_eq!([0x69; 32].public(false).unwrap(), PUB_U_L);
    }

    #[test]
    fn test_segwit_p2wpkh() {
        assert_eq!(PUB_C_1.segwit_p2wpkh().unwrap(), SEGW_1);
        assert_eq!(PUB_C_A.segwit_p2wpkh().unwrap(), SEGW_A);
        assert_eq!(PUB_C_L.segwit_p2wpkh().unwrap(), SEGW_L);
    }

    #[test]
    fn test_segwit_p2wpkh_p2sh() {
        assert_eq!(PUB_C_1.segwit_p2wpkh_p2sh().unwrap(), P2WPKH_P2SH_1);
        assert_eq!(PUB_C_A.segwit_p2wpkh_p2sh().unwrap(), P2WPKH_P2SH_A);
        assert_eq!(PUB_C_L.segwit_p2wpkh_p2sh().unwrap(), P2WPKH_P2SH_L);
    }

    #[test]
    fn test_show_decrypt() {
        assert!(TV_38_ENCRYPTED[0].show_decrypt(TV_38_PASS[0], SEP_DEFAULT, true).is_ok());
    }

    #[test]
    fn test_show_encrypt() {
        assert_eq!(TV_38_WIF[0].show_encrypt("pass", false).unwrap_err(), Error::FlagU);
        assert!(TV_38_WIF[1].show_encrypt("pass", true).is_ok());
    }

    #[test]
    fn test_validate_prvk() {
        assert!(validate_prvk(String::from(WIC_1)).is_ok());
        assert!(validate_prvk(String::from(WIC_L)).is_ok());
        assert!(validate_prvk(String::from(WIF_1)).is_ok());
        assert!(validate_prvk(String::from(WIF_L)).is_ok());
        assert!(validate_prvk(String::from(["a"; 64].concat())).is_ok());
        for eprvk in &TV_38_ENCRYPTED {
            assert!(validate_prvk(String::from(*eprvk)).is_ok());
        }
        assert!(validate_prvk(String::from(&WIC_1[1..])).is_err());
        assert!(validate_prvk(String::from(&WIF_1[1..])).is_err());
        assert!(validate_prvk(String::from(&WIC_1[..LEN_WIF_C - 1])).is_err());
        assert!(validate_prvk(String::from(&WIF_1[..LEN_WIF_U - 1])).is_err());
        assert!(validate_prvk(String::from([WIC_1, "1"].concat())).is_err());
        assert!(validate_prvk(String::from([WIF_1, "2"].concat())).is_err());
        assert!(validate_prvk(String::from(["b"; 63].concat())).is_err());
        assert!(validate_prvk(String::from(["x"; 64].concat())).is_err());
        assert!(validate_prvk(String::from(["c"; 65].concat())).is_err());
        for eprvk in &TV_38_ENCRYPTED {
            assert!(validate_prvk(String::from(&eprvk[1..])).is_err());
        }
        for eprvk in &TV_38_ENCRYPTED {
            assert!(validate_prvk(String::from(&eprvk[..LEN_EKEY - 1])).is_err());
        }
        for eprvk in &TV_38_ENCRYPTED {
            assert!( validate_prvk(String::from([eprvk, "3"].concat())).is_err());
        }
        assert!(validate_prvk(String::from("everything else")).is_err());
    }

    #[test]
    fn test_wif() {
        assert_eq!([0x11; 32].wif(true), WIC_1);
        assert_eq!(P2WPKH_B.wif(true), WIC_A);
        assert_eq!([0x69; 32].wif(true), WIC_L);
        assert_eq!([0x11; 32].wif(false), WIF_1);
        assert_eq!(P2WPKH_B.wif(false), WIF_A);
        assert_eq!([0x69; 32].wif(false), WIF_L);
    }
}