1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
//! # Embedded Time
//! `embedded-time` provides a comprehensive library for implementing [`Clock`] abstractions over
//! hardware to generate [`Instant`]s and using [`Duration`]s ([`Seconds`], [`Milliseconds`], etc)
//! in embedded systems. The approach is similar to the C++ `chrono` library. A [`Duration`]
//! consists of an integer (whose type is chosen by the user to be either [`i32`] or [`i64`]) as
//! well as a `const` ratio where the integer value multiplied by the ratio is the [`Duration`] in
//! seconds. Put another way, the ratio is the precision of the LSbit of the integer. This structure
//! avoids unnecessary arithmetic. For example, if the [`Duration`] type is [`Milliseconds`], a call
//! to the [`Duration::count()`] method simply returns the stored integer value directly which is
//! the number of milliseconds being represented. Conversion arithmetic is only performed when
//! explicitly converting between time units.
//!
//! [`Clock`]: trait.Clock.html
//! [`Instant`]: instant::Instant
//! [`Seconds`]: time_units::Seconds
//! [`Milliseconds`]: time_units::Milliseconds
//!
//! ## Definitions
//! **Clock**: Any entity that periodically counts (ie a hardware timer peripheral). Generally,
//! this needs to be monotonic. A wrapping timer is considered monotonic in this context as long as
//! it fulfills the other requirements.
//!
//! **Wrapping Timer**: A timer that when at its maximum value, the next count is the minimum
//! value.
//!
//! **Instant**: A specific instant in time ("time-point") returned by calling `Clock::now()`.
//!
//! **Duration**: The difference of two instances. The duration of time elapsed from one instant
//! until another. A span of time.
//!
//! ## Notes
//! Some parts of this crate were derived from various sources:
//! - [`RTFM`](https://github.com/rtfm-rs/cortex-m-rtfm)
//! - [`time`](https://docs.rs/time/latest/time) (Specifically the [`time::NumbericalDuration`](https://docs.rs/time/latest/time/trait.NumericalDuration.html)
//!   implementations for primitive integers)
//!
//! # Example Usage
//! ```rust,no_run
//! # use embedded_time::{prelude::*, time_units::*, instant::Instant, Period};
//! # #[derive(Debug)]
//! struct SomeClock;
//! impl embedded_time::Clock for SomeClock {
//!     type Rep = i64;
//!     const PERIOD: Period = Period::new_raw(1, 16_000_000);
//!
//!     fn now() -> Instant<Self> {
//!         // ...
//! #         unimplemented!()
//!     }
//! }
//!
//! let instant1 = SomeClock::now();
//! // ...
//! let instant2 = SomeClock::now();
//! assert!(instant1 < instant2);    // instant1 is *before* instant2
//!
//! // duration is the difference between the instances
//! let duration: Option<Microseconds<i64>> = instant2.duration_since(&instant1);    
//!
//! assert!(duration.is_some());
//! assert_eq!(instant1 + duration.unwrap(), instant2);
//! ```

#![cfg_attr(not(test), no_std)]
#![feature(associated_type_bounds)]
#![deny(intra_doc_link_resolution_failure)]

mod clock;
pub mod duration;
pub mod instant;
mod numerical_duration;

pub use clock::Clock;
pub use duration::{time_units, Duration};
pub use numerical_duration::TimeRep;

pub type Period = num::rational::Ratio<i32>;

/// A collection of imports that are widely useful.
///
/// Unlike the standard library, this must be explicitly imported:
///
/// ```rust,no_run
/// use embedded_time::prelude::*;
/// ```
/// The prelude may grow in minor releases. Any removals will only occur in
/// major releases.
pub mod prelude {
    // Rename traits to `_` to avoid any potential name conflicts.
    pub use crate::duration::Duration as _;
    pub use crate::duration::TryConvertFrom as _;
    pub use crate::duration::TryConvertInto as _;
    pub use crate::numerical_duration::TimeRep as _;
    pub use crate::Clock as _;
    pub use crate::Period as _;
    pub use num::Integer as _;
}

#[cfg(test)]
#[allow(unused_imports)]
mod tests {
    use crate::instant::Instant;
    use crate::prelude::*;
    use crate::time_units::*;
    use crate::{Clock, Period};

    #[derive(Debug, Ord, PartialOrd, Eq, PartialEq)]
    struct MockClock64;
    impl Clock for MockClock64 {
        type Rep = i64;
        const PERIOD: Period = Period::new_raw(1, 64_000_000);

        fn now() -> Instant<Self> {
            Instant::new(128_000_000)
        }
    }

    #[derive(Debug, Ord, PartialOrd, Eq, PartialEq)]
    struct MockClock32;
    impl Clock for MockClock32 {
        type Rep = i32;
        const PERIOD: Period = Period::new_raw(1, 16_000_000);

        fn now() -> Instant<Self> {
            Instant::new(32_000_000)
        }
    }

    fn get_time<M>()
    where
        M: Clock,
    {
        assert_eq!(M::now().elapsed_since_epoch(), Some(Seconds(2)));
    }

    #[test]
    fn common_types() {
        let then = MockClock32::now();
        let now = MockClock32::now();

        get_time::<MockClock64>();
        get_time::<MockClock32>();

        let then = then - Seconds(1);
        assert_ne!(then, now);
        assert!(then < now);
    }

    #[test]
    fn brute_force() {
        let mut time = 1_i64;
        time *= 60;
        assert_eq!(Hours(1), Minutes(time));
        time *= 60;
        assert_eq!(Hours(1), Seconds(time));
        time *= 1000;
        assert_eq!(Hours(1), Milliseconds(time));
        time *= 1000;
        assert_eq!(Hours(1), Microseconds(time));
        time *= 1000;
        assert_eq!(Hours(1), Nanoseconds(time));
    }
}