1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
//! A Hardware Abstraction Layer (HAL) for embedded systems
//!
//! **NOTE** This HAL is still is active development. Expect the traits presented here to be
//! tweaked, split or be replaced wholesale before being stabilized, i.e. before hitting the 1.0.0
//! release.
//!
//! **NOTE** If you want to use an alpha release of the 1.0.0 version, use an exact version
//! specifier in your `Cargo.toml` like: `embedded-hal = "=1.0.0-alpha.2"`.
//!
//! # Design goals
//!
//! The HAL
//!
//! - Must *erase* device specific details. Neither register, register blocks or magic values should
//! appear in the API.
//!
//! - Must be generic *within* a device and *across* devices. The API to use a serial interface must
//! be the same regardless of whether the implementation uses the USART1 or UART4 peripheral of a
//! device or the UART0 peripheral of another device.
//!
//! - Where possible must *not* be tied to a specific asynchronous model. The API should be usable
//! in blocking mode, with the `futures` model, with an async/await model or with a callback model.
//! (cf. the [`nb`] crate)
//!
//! - Must be minimal, and thus easy to implement and zero cost, yet highly composable. People that
//! want higher level abstraction should *prefer to use this HAL* rather than *re-implement*
//! register manipulation code.
//!
//! - Serve as a foundation for building an ecosystem of platform agnostic drivers. Here driver
//! means a library crate that lets a target platform interface an external device like a digital
//! sensor or a wireless transceiver. The advantage of this system is that by writing the driver as
//! a generic library on top of `embedded-hal` driver authors can support any number of target
//! platforms (e.g. Cortex-M microcontrollers, AVR microcontrollers, embedded Linux, etc.). The
//! advantage for application developers is that by adopting `embedded-hal` they can unlock all
//! these drivers for their platform.
//!
//! - Trait methods must be fallible so that they can be used in any possible situation.
//! Nevertheless, HAL implementations can additionally provide infallible versions of the same methods
//! if they can never fail in their platform. This way, generic code can use the fallible abstractions
//! provided here but platform-specific code can avoid fallibility-related boilerplate if possible.
//!
//! # Out of scope
//!
//! - Initialization and configuration stuff like "ensure this serial interface and that SPI
//! interface are not using the same pins". The HAL will focus on *doing I/O*.
//!
//! # Reference implementation
//!
//! The [`stm32f1xx-hal`] crate contains a reference implementation of this HAL.
//!
//! [`stm32f1xx-hal`]: https://crates.io/crates/stm32f1xx-hal
//!
//! # Platform agnostic drivers
//!
//! You can find platform agnostic drivers built on top of `embedded-hal` on crates.io by [searching
//! for the *embedded-hal* keyword](https://crates.io/keywords/embedded-hal).
//!
//! If you are writing a platform agnostic driver yourself you are highly encouraged to [add the
//! embedded-hal keyword](https://doc.rust-lang.org/cargo/reference/manifest.html#package-metadata)
//! to your crate before publishing it!
//!
//! # Detailed design
//!
//! ## Traits
//!
//! The HAL is specified as traits to allow generic programming. These traits make use of the
//! [`nb`][] crate (*please go read that crate documentation before continuing*) to abstract over
//! the asynchronous model and to also provide a blocking operation mode.
//!
//! [`nb`]: https://crates.io/crates/nb
//!
//! Here's how a HAL trait may look like:
//!
//! ```
//! use embedded_hal::nb;
//!
//! /// A serial interface
//! pub trait Serial {
//!     /// Error type associated to this serial interface
//!     type Error: core::fmt::Debug;
//!
//!     /// Reads a single byte
//!     fn read(&mut self) -> nb::Result<u8, Self::Error>;
//!
//!     /// Writes a single byte
//!     fn write(&mut self, byte: u8) -> nb::Result<(), Self::Error>;
//! }
//! ```
//!
//! The `nb::Result` enum is used to add a [`WouldBlock`] variant to the errors
//! of the serial interface. As explained in the documentation of the `nb` crate this single API,
//! when paired with the macros in the `nb` crate, can operate in a blocking manner, or be adapted
//! to other asynchronous execution schemes.
//!
//! [`WouldBlock`]: https://docs.rs/nb/0.1.0/nb/enum.Error.html
//!
//! Some traits, like the one shown below, may expose possibly blocking APIs that can't fail. In
//! those cases `nb::Result<_, Infallible>` is used.
//!
//! ```
//! use embedded_hal::nb;
//!
//! # use std as core;
//! use ::core::convert::Infallible;
//!
//! /// A count down timer
//! pub trait CountDown {
//!     // ..
//!
//!     /// "waits" until the count down is over
//!     fn wait(&mut self) -> nb::Result<(), Infallible>;
//! }
//!
//! # fn main() {}
//! ```
//!
//! ## Suggested implementation
//!
//! The HAL traits should be implemented for device crates generated via [`svd2rust`] to maximize
//! code reuse.
//!
//! [`svd2rust`]: https://crates.io/crates/svd2rust
//!
//! Shown below is an implementation of some of the HAL traits for the [`stm32f1xx-hal`] crate. This
//! single implementation will work for *any* microcontroller in the STM32F1xx family.
//!
//! [`stm32f1`]: https://crates.io/crates/stm32f1
//!
//! ```no_run
//! // crate: stm32f1xx-hal
//! // An implementation of the `embedded-hal` traits for STM32F1xx microcontrollers
//!
//! use embedded_hal as hal;
//! use hal::nb;
//!
//! // device crate
//! use stm32f1::stm32f103::USART1;
//!
//! /// A serial interface
//! // NOTE generic over the USART peripheral
//! pub struct Serial<USART> { usart: USART }
//!
//! // convenience type alias
//! pub type Serial1 = Serial<USART1>;
//!
//! impl hal::serial::ErrorType for Serial<USART1> {
//!     type Error = hal::serial::ErrorKind;
//! }
//!
//! impl hal::serial::nb::Read<u8> for Serial<USART1> {
//!     fn read(&mut self) -> nb::Result<u8, Self::Error> {
//!         // read the status register
//!         let isr = self.usart.sr.read();
//!
//!         if isr.ore().bit_is_set() {
//!             // Error: Buffer overrun
//!             Err(nb::Error::Other(Self::Error::Overrun))
//!         }
//!         // omitted: checks for other errors
//!         else if isr.rxne().bit_is_set() {
//!             // Data available: read the data register
//!             Ok(self.usart.dr.read().bits() as u8)
//!         } else {
//!             // No data available yet
//!             Err(nb::Error::WouldBlock)
//!         }
//!     }
//! }
//!
//! impl hal::serial::nb::Write<u8> for Serial<USART1> {
//!     fn write(&mut self, byte: u8) -> nb::Result<(), Self::Error> {
//!         // Similar to the `read` implementation
//!         # Ok(())
//!     }
//!
//!     fn flush(&mut self) -> nb::Result<(), Self::Error> {
//!         // Similar to the `read` implementation
//!         # Ok(())
//!     }
//! }
//!
//! # fn main() {}
//! ```
//!
//! ## Intended usage
//!
//! Thanks to the [`nb`] crate the HAL API can be used in a blocking manner
//! with the [`block!`] macro or with `futures`.
//!
//! [`block!`]: https://docs.rs/nb/1.0.0/nb/macro.block.html
//!
//! ### Blocking mode
//!
//! An example of writing a string over the serial interface in a blocking
//! fashion:
//!
//! ```
//! use crate::stm32f1xx_hal::Serial1;
//! use embedded_hal::serial::nb::Write;
//! use embedded_hal::nb::block;
//!
//! # fn main() {
//! let mut serial: Serial1 = {
//!     // ..
//! #   Serial1
//! };
//!
//! for byte in b"Hello, world!" {
//!     // NOTE `block!` blocks until `serial.write()` completes and returns
//!     // `Result<(), Error>`
//!     block!(serial.write(*byte)).unwrap();
//! }
//! # }
//!
//! # mod stm32f1xx_hal {
//! #     use embedded_hal::nb;
//! #     use core::convert::Infallible;
//! #     pub struct Serial1;
//! #     impl Serial1 {
//! #         pub fn write(&mut self, _: u8) -> nb::Result<(), Infallible> {
//! #             Ok(())
//! #         }
//! #     }
//! # }
//! ```
//!
//! ## Generic programming and higher level abstractions
//!
//! The core of the HAL has been kept minimal on purpose to encourage building **generic** higher
//! level abstractions on top of it. Some higher level abstractions that pick an asynchronous model
//! or that have blocking behavior and that are deemed useful to build other abstractions can be
//! found in the `blocking` module.
//!
//! Some examples:
//!
//! **NOTE** All the functions shown below could have been written as trait
//! methods with default implementation to allow specialization, but they have
//! been written as functions to keep things simple.
//!
//! - Write a whole buffer to a serial device in blocking a fashion.
//!
//! ```
//! use embedded_hal as hal;
//! use hal::nb::block;
//! use hal::serial::nb::Write;
//!
//! fn write_all<S>(serial: &mut S, buffer: &[u8]) -> Result<(), S::Error>
//! where
//!     S: hal::serial::nb::Write<u8>
//! {
//!     for &byte in buffer {
//!         block!(serial.write(byte))?;
//!     }
//!
//!     Ok(())
//! }
//!
//! # fn main() {}
//! ```
//!
//! - Buffered serial interface with periodic flushing in interrupt handler
//!
//! ```
//! # use std as core;
//! use embedded_hal as hal;
//! use hal::nb;
//!
//! use hal::serial::{ErrorKind, nb::Write};
//!
//! fn flush<S>(serial: &mut S, cb: &mut CircularBuffer)
//! where
//!     S: hal::serial::nb::Write<u8, Error = ErrorKind>,
//! {
//!     loop {
//!         if let Some(byte) = cb.peek() {
//!             match serial.write(*byte) {
//!                 Err(nb::Error::Other(_)) => unreachable!(),
//!                 Err(nb::Error::WouldBlock) => return,
//!                 Ok(()) => {}, // keep flushing data
//!             }
//!         }
//!
//!         cb.pop();
//!     }
//! }
//!
//! // The stuff below could be in some other crate
//!
//! /// Global singleton
//! pub struct BufferedSerial1;
//!
//! // NOTE private
//! static BUFFER1: Mutex<CircularBuffer> = {
//!     // ..
//! #   Mutex(CircularBuffer)
//! };
//! static SERIAL1: Mutex<Serial1> = {
//!     // ..
//! #   Mutex(Serial1)
//! };
//!
//! impl BufferedSerial1 {
//!     pub fn write(&self, byte: u8) {
//!         self.write_all(&[byte])
//!     }
//!
//!     pub fn write_all(&self, bytes: &[u8]) {
//!         let mut buffer = BUFFER1.lock();
//!         for byte in bytes {
//!             buffer.push(*byte).expect("buffer overrun");
//!         }
//!         // omitted: pend / enable interrupt_handler
//!     }
//! }
//!
//! fn interrupt_handler() {
//!     let mut serial = SERIAL1.lock();
//!     let mut buffer = BUFFER1.lock();
//!
//!     flush(&mut *serial, &mut buffer);
//! }
//!
//! # struct Mutex<T>(T);
//! # impl<T> Mutex<T> {
//! #     fn lock(&self) -> RefMut<T> { unimplemented!() }
//! # }
//! # struct RefMut<'a, T>(&'a mut T) where T: 'a;
//! # impl<'a, T> ::core::ops::Deref for RefMut<'a, T> {
//! #     type Target = T;
//! #     fn deref(&self) -> &T { self.0 }
//! # }
//! # impl<'a, T> ::core::ops::DerefMut for RefMut<'a, T> {
//! #     fn deref_mut(&mut self) -> &mut T { self.0 }
//! # }
//! # struct Serial1;
//! # impl hal::serial::ErrorType for Serial1 {
//! #   type Error = ErrorKind;
//! # }
//! # impl hal::serial::nb::Write<u8> for Serial1 {
//! #   fn write(&mut self, _: u8) -> nb::Result<(), Self::Error> { Err(::nb::Error::WouldBlock) }
//! #   fn flush(&mut self) -> nb::Result<(), Self::Error> { Err(::nb::Error::WouldBlock) }
//! # }
//! # struct CircularBuffer;
//! # impl CircularBuffer {
//! #   pub fn peek(&mut self) -> Option<&u8> { None }
//! #   pub fn pop(&mut self) -> Option<u8> { None }
//! #   pub fn push(&mut self, _: u8) -> Result<(), ()> { Ok(()) }
//! # }
//!
//! # fn main() {}
//! ```

#![deny(missing_docs)]
#![no_std]

pub mod fmt;
pub use nb;
pub mod can;
pub mod delay;
pub mod digital;
pub mod i2c;
pub mod serial;
pub mod spi;

mod private {
    use crate::i2c::{SevenBitAddress, TenBitAddress};
    pub trait Sealed {}

    impl Sealed for SevenBitAddress {}
    impl Sealed for TenBitAddress {}
}