1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
/*!
 * Generic views into a tensor.
 *
 * The concept of a view into a tensor is built from the low level [TensorRef](TensorRef) and
 * [TensorMut](TensorMut) traits which define having read and read/write access to Tensor data
 * respectively, and the high level API implemented on the [TensorView](TensorView) struct.
 *
 * Since a Tensor is itself a TensorRef, the APIs for the traits are a little verbose to
 * avoid name clashes with methods defined on the Tensor and TensorView types. You should
 * typically use TensorRef and TensorMut implementations via the TensorView struct which provides
 * an API closely resembling Tensor.
 */

use std::marker::PhantomData;

use crate::linear_algebra;
use crate::numeric::{Numeric, NumericRef};
use crate::tensors::indexing::{
    TensorAccess, TensorIterator, TensorReferenceIterator, TensorReferenceMutIterator,
    TensorTranspose,
};
use crate::tensors::{Dimension, Tensor};

mod indexes;
mod ranges;
mod renamed;
pub mod traits;
mod zip;

pub use indexes::*;
pub use ranges::*;
pub use renamed::*;
pub use zip::*;

/**
* A shared/immutable reference to a tensor (or a portion of it) of some type and number of
* dimensions.
*
* # Indexing
*
* A TensorRef has a shape of type `[(Dimension, usize); D]`. This defines the valid indexes along
* each dimension name and length pair from 0 inclusive to the length exclusive. If the shape was
* `[("r", 2), ("c", 2)]` the indexes used would be `[0,0]`, `[0,1]`, `[1,0]` and `[1,1]`.
* Although the dimension name in each pair is used for many high level APIs, for TensorRef the
* order of dimensions is used, and the indexes (`[usize; D]`) these trait methods are called with
* must be in the same order as the shape. In general some `[("a", a), ("b", b), ("c", c)...]`
* shape is indexed from `[0,0,0...]` through to `[a - 1, b - 1, c - 1...]`, regardless of how the
* data is actually laid out in memory.
*
* # Safety
*
* In order to support returning references without bounds checking in a useful way, the
* implementing type is required to uphold several invariants that cannot be checked by
* the compiler.
*
* 1 - Any valid index as described in Indexing will yield a safe reference when calling
* `get_reference_unchecked` and `get_reference_unchecked_mut`.
*
* 2 - The view shape that defines which indexes are valid may not be changed by a shared reference
* to the TensorRef implementation. ie, the tensor may not be resized while a mutable reference is
* held to it, except by that reference.
*
* 3 - All dimension names in the `view_shape` must be unique.
*
* 4 - All dimension lengths in the `view_shape` must be non zero.
*
* 5 - `data_layout` must return values correctly as documented on [`DataLayout`](DataLayout)
*
* Essentially, interior mutability causes problems, since code looping through the range of valid
* indexes in a TensorRef needs to be able to rely on that range of valid indexes not changing.
* This is trivially the case by default since a [Tensor](Tensor) does not have any form of
* interior mutability, and therefore an iterator holding a shared reference to a Tensor prevents
* that tensor being resized. However, a type *wrongly* implementing TensorRef could introduce
* interior mutability by putting the Tensor in an `Arc<Mutex<>>` which would allow another thread
* to resize a tensor while an iterator was looping through previously valid indexes on a different
* thread. This is the same contract as
* [`NoInteriorMutability`](crate::matrices::views::NoInteriorMutability) used in the matrix APIs.
*
* Note that it is okay to be able to resize any TensorRef implementation if that always requires
* an exclusive reference to the TensorRef/Tensor, since the exclusivity prevents the above
* scenario.
*/
pub unsafe trait TensorRef<T, const D: usize> {
    /**
     * Gets a reference to the value at the index if the index is in range. Otherwise returns None.
     */
    fn get_reference(&self, indexes: [usize; D]) -> Option<&T>;

    /**
     * The shape this tensor has. See [dimensions](crate::tensors::dimensions) for an overview.
     * The product of the lengths in the pairs define how many elements are in the tensor
     * (or the portion of it that is visible).
     */
    fn view_shape(&self) -> [(Dimension, usize); D];

    /**
     * Gets a reference to the value at the index without doing any bounds checking. For a safe
     * alternative see [get_reference](TensorRef::get_reference).
     *
     * # Safety
     *
     * Calling this method with an out-of-bounds index is *[undefined behavior]* even if the
     * resulting reference is not used. Valid indexes are defined as in [TensorRef].
     *
     * [undefined behavior]: <https://doc.rust-lang.org/reference/behavior-considered-undefined.html>
     * [TensorRef]: TensorRef
     */
    unsafe fn get_reference_unchecked(&self, indexes: [usize; D]) -> &T;

    /**
     * The way the data in this tensor is laid out in memory. In particular,
     * [`Linear`](DataLayout) has several requirements on what is returned that must be upheld
     * by implementations of this trait.
     *
     * For a [Tensor] this would return `DataLayout::Linear` in the same order as the `view_shape`,
     * since the data is in a single line and the `view_shape` is in most significant dimension
     * to least. Many views however, create shapes that do not correspond to linear memory, either
     * by combining non array data with tensors, or hiding dimensions. Similarly, a row major
     * Tensor might be transposed to a column major TensorView, so the view shape could be reversed
     * compared to the order of significance of the dimensions in memory.
     *
     * In general, an array of dimension names matching the view shape order is big endian, and
     * will be iterated through efficiently by [TensorIterator], and an array of dimension names
     * in reverse of the view shape is in little endian order.
     *
     * The implementation of this trait must ensure that if it returns `DataLayout::Linear`
     * the set of dimension names are returned in the order of most significant to least and match
     * the set of the dimension names returned by `view_shape`.
     */
    fn data_layout(&self) -> DataLayout<D>;
}

/**
 * How the data in the tensor is laid out in memory.
 */
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum DataLayout<const D: usize> {
    /**
     * The data is laid out in linear storage in memory, such that we could take a slice over the
     * entire data specified by our `view_shape`.
     *
     * The `D` length array specifies the dimensions in the `view_shape` in the order of most
     * significant dimension (in memory) to least.
     *
     * In general, an array of dimension names in the same order as the view shape is big endian
     * order (implying the order of dimensions in the view shape is most significant to least),
     * and will be iterated through efficiently by [TensorIterator], and an array of
     * dimension names in reverse of the view shape is in little endian order
     * (implying the order of dimensions in the view shape is least significant to most).
     *
     * In memory, the data will have some order such that if we want repeatedly take 1 step
     * through memory from the first value to the last there will be a most significant dimension
     * that always goes up, through to a least significant dimension with the most rapidly varying
     * index.
     *
     * In most of Easy ML's Tensors, the `view_shape` dimensions would already be in the order of
     * most significant dimension to least (since [Tensor] stores its data in big endian order),
     * so the list of dimension names will just increment match the order of the view shape.
     *
     * For example, a tensor with a view shape of `[("batch", 2), ("row", 2), ("column", 3)]` that
     * stores its data in most significant to least would be (indexed) like:
     * ```ignore
     * [
     *   (0,0,0), (0,0,1), (0,0,2),
     *   (0,1,0), (0,1,1), (0,1,2),
     *   (1,0,0), (1,0,1), (1,0,2),
     *   (1,1,0), (1,1,1), (1,1,2)
     * ]
     * ```
     *
     * To take one step in memory, we would increment the right most dimension index ("column"),
     * counting our way up through to the left most dimension index ("batch"). If we changed
     * this tensor to `[("column", 3), ("row", 2), ("batch", 2)]` so that the `view_shape` was
     * swapped to least significant dimension to most but the data remained in the same order,
     * our tensor would still have a DataLayout of `Linear(["batch", "row", "column"])`, since
     * the indexes in the transposed `view_shape` correspond to an actual memory layout that's
     * completely reversed. Alternatively, you could say we reversed the view shape but the
     * memory layout never changed:
     * ```ignore
     * [
     *   (0,0,0), (1,0,0), (2,0,0),
     *   (0,1,0), (1,1,0), (2,1,0),
     *   (0,0,1), (1,0,1), (2,0,1),
     *   (0,1,1), (1,1,1), (2,1,1)
     * ]
     * ```
     *
     * To take one step in memory, we now need to increment the left most dimension index (on
     * the view shape) ("column"), counting our way in reverse to the right most dimension
     * index ("batch").
     *
     * That `["batch", "row", "column"]` is also exactly the order you would need to swap your
     * dimensions on the `view_shape` to get back to most significant to least. A [TensorAccess]
     * could reorder the tensor by this array order to get back to most significant to least
     * ordering on the `view_shape` in order to iterate through the data efficiently.
     */
    Linear([Dimension; D]),
    /**
     * The data is not laid out in linear storage in memory.
     */
    NonLinear,
    /**
     * The data is not laid out in a linear or non linear way, or we don't know how it's laid
     * out.
     */
    Other,
}

/**
 * A unique/mutable reference to a tensor (or a portion of it) of some type.
 *
 * # Safety
 *
 * See [TensorRef](TensorRef).
 */
pub unsafe trait TensorMut<T, const D: usize>: TensorRef<T, D> {
    /**
     * Gets a mutable reference to the value at the index, if the index is in range. Otherwise
     * returns None.
     */
    fn get_reference_mut(&mut self, indexes: [usize; D]) -> Option<&mut T>;

    /**
     * Gets a mutable reference to the value at the index without doing any bounds checking.
     * For a safe alternative see [get_reference_mut](TensorMut::get_reference_mut).
     *
     * # Safety
     *
     * Calling this method with an out-of-bounds index is *[undefined behavior]* even if the
     * resulting reference is not used. Valid indexes are defined as in [TensorRef].
     *
     * [undefined behavior]: <https://doc.rust-lang.org/reference/behavior-considered-undefined.html>
     * [TensorRef]: TensorRef
     */
    unsafe fn get_reference_unchecked_mut(&mut self, indexes: [usize; D]) -> &mut T;
}

/**
 * A view into some or all of a tensor.
 *
 * A TensorView has a similar relationship to a [`Tensor`](Tensor) as a
 * `&str` has to a `String`, or an array slice to an array. A TensorView cannot resize
 * its source, and may span only a portion of the source Tensor in each dimension.
 *
 * However a TensorView is generic not only over the type of the data in the Tensor,
 * but also over the way the Tensor is 'sliced' and the two are orthogonal to each other.
 *
 * TensorView closely mirrors the API of Tensor.
 * Methods that create a new tensor do not return a TensorView, they return a Tensor.
 */
pub struct TensorView<T, S, const D: usize> {
    source: S,
    _type: PhantomData<T>,
}

/**
 * TensorView methods which require only read access via a [TensorRef](TensorRef) source.
 */
impl<T, S, const D: usize> TensorView<T, S, D>
where
    S: TensorRef<T, D>,
{
    /**
     * Creates a TensorView from a source of some type.
     *
     * The lifetime of the source determines the lifetime of the TensorView created. If the
     * TensorView is created from a reference to a Tensor, then the TensorView cannot live
     * longer than the Tensor referenced.
     */
    pub fn from(source: S) -> TensorView<T, S, D> {
        TensorView {
            source,
            _type: PhantomData,
        }
    }

    /**
     * Consumes the tensor view, yielding the source it was created from.
     */
    pub fn source(self) -> S {
        self.source
    }

    /**
     * Gives a reference to the tensor view's source.
     */
    pub fn source_ref(&self) -> &S {
        &self.source
    }

    /**
     * Gives a mutable reference to the tensor view's source.
     */
    pub fn source_ref_mut(&mut self) -> &mut S {
        &mut self.source
    }

    /**
     * The shape of this tensor view. Since Tensors are named Tensors, their shape is not just a
     * list of length along each dimension, but instead a list of pairs of names and lengths.
     *
     * Note that a TensorView may have a shape which is different than the Tensor it is providing
     * access to the data of. The TensorView might be [masking dimensions](TensorIndex) or
     * elements from the shape, or exposing [false ones](TensorExpansion).
     *
     * See also
     * - [dimensions](crate::tensors::dimensions)
     * - [indexing](crate::tensors::indexing)
     */
    pub fn shape(&self) -> [(Dimension, usize); D] {
        self.source.view_shape()
    }

    /**
     * Returns a TensorAccess which can be indexed in the order of the supplied dimensions
     * to read values from this tensor view.
     *
     * # Panics
     *
     * If the set of dimensions supplied do not match the set of dimensions in this tensor's shape.
     */
    #[track_caller]
    pub fn index_by(&self, dimensions: [Dimension; D]) -> TensorAccess<T, &S, D> {
        TensorAccess::from(&self.source, dimensions)
    }

    /**
     * Returns a TensorAccess which can be indexed in the order of the supplied dimensions
     * to read or write values from this tensor view.
     *
     * # Panics
     *
     * If the set of dimensions supplied do not match the set of dimensions in this tensor's shape.
     */
    #[track_caller]
    pub fn index_by_mut(&mut self, dimensions: [Dimension; D]) -> TensorAccess<T, &mut S, D> {
        TensorAccess::from(&mut self.source, dimensions)
    }

    /**
     * Returns a TensorAccess which can be indexed in the order of the supplied dimensions
     * to read or write values from this tensor view.
     *
     * # Panics
     *
     * If the set of dimensions supplied do not match the set of dimensions in this tensor's shape.
     */
    #[track_caller]
    pub fn index_by_owned(self, dimensions: [Dimension; D]) -> TensorAccess<T, S, D> {
        TensorAccess::from(self.source, dimensions)
    }

    /**
     * Creates a TensorAccess which will index into the dimensions of the source this TensorView
     * was created with in the same order as they were declared.
     * See [TensorAccess::from_source_order].
     */
    pub fn index(&self) -> TensorAccess<T, &S, D> {
        TensorAccess::from_source_order(&self.source)
    }

    /**
     * Creates a TensorAccess which will index into the dimensions of the source this TensorView
     * was created with in the same order as they were declared. The TensorAccess mutably borrows
     * the source, and can therefore mutate it if it implements TensorMut.
     * See [TensorAccess::from_source_order].
     */
    pub fn index_mut(&mut self) -> TensorAccess<T, &mut S, D> {
        TensorAccess::from_source_order(&mut self.source)
    }

    /**
     * Creates a TensorAccess which will index into the dimensions this Tensor was
     * created with in the same order as they were provided. The TensorAccess takes ownership
     * of the Tensor, and can therefore mutate it. The TensorAccess takes ownership of
     * the source, and can therefore mutate it if it implements TensorMut.
     * See [TensorAccess::from_source_order].
     */
    pub fn index_owned(self) -> TensorAccess<T, S, D> {
        TensorAccess::from_source_order(self.source)
    }

    /**
     * Returns an iterator over references to the data in this TensorView.
     */
    pub fn iter_reference(&self) -> TensorReferenceIterator<T, S, D> {
        TensorReferenceIterator::from(&self.source)
    }

    /**
     * Returns a TensorView with the dimension names of the shape renamed to the provided
     * dimensions. The data of this tensor and the dimension lengths and order remain unchanged.
     *
     * This is a shorthand for constructing the TensorView from this TensorView. See
     * [`Tensor::rename_view`](Tensor::rename_view).
     *
     * # Panics
     *
     * If a dimension name is not unique
     */
    #[track_caller]
    pub fn rename_view(
        &self,
        dimensions: [Dimension; D],
    ) -> TensorView<T, TensorRename<T, &S, D>, D> {
        TensorView::from(TensorRename::from(&self.source, dimensions))
    }

    /**
     * Returns a TensorView with a range taken in P dimensions, hiding the values **outside** the
     * range from view. Error cases are documented on [TensorRange](TensorRange).
     *
     * This is a shorthand for constructing the TensorView from this TensorView. See
     * [`Tensor::range`](Tensor::range).
     */
    pub fn range<R, const P: usize>(
        &self,
        ranges: [(Dimension, R); P],
    ) -> Result<TensorView<T, TensorRange<T, &S, D>, D>, IndexRangeValidationError<D, P>>
    where
        R: Into<IndexRange>,
    {
        TensorRange::from(&self.source, ranges).map(|range| TensorView::from(range))
    }

    /**
     * Returns a TensorView with a range taken in P dimensions, hiding the values **outside** the
     * range from view. Error cases are documented on [TensorRange](TensorRange). The TensorRange
     * mutably borrows the source, and can therefore mutate it if it implements TensorMut.
     *
     * This is a shorthand for constructing the TensorView from this TensorView. See
     * [`Tensor::range`](Tensor::range).
     */
    pub fn range_mut<R, const P: usize>(
        &mut self,
        ranges: [(Dimension, R); P],
    ) -> Result<TensorView<T, TensorRange<T, &mut S, D>, D>, IndexRangeValidationError<D, P>>
    where
        R: Into<IndexRange>,
    {
        TensorRange::from(&mut self.source, ranges).map(|range| TensorView::from(range))
    }

    /**
     * Returns a TensorView with a range taken in P dimensions, hiding the values **outside** the
     * range from view. Error cases are documented on [TensorRange](TensorRange). The TensorRange
     * takes ownership of the source, and can therefore mutate it if it implements TensorMut.
     *
     * This is a shorthand for constructing the TensorView from this TensorView. See
     * [`Tensor::range`](Tensor::range).
     */
    pub fn range_owned<R, const P: usize>(
        self,
        ranges: [(Dimension, R); P],
    ) -> Result<TensorView<T, TensorRange<T, S, D>, D>, IndexRangeValidationError<D, P>>
    where
        R: Into<IndexRange>,
    {
        TensorRange::from(self.source, ranges).map(|range| TensorView::from(range))
    }

    /**
     * Returns a TensorView with a mask taken in P dimensions, hiding the values **inside** the
     * range from view. Error cases are documented on [TensorMask](TensorMask).
     *
     * This is a shorthand for constructing the TensorView from this TensorView. See
     * [`Tensor::mask`](Tensor::mask).
     */
    pub fn mask<R, const P: usize>(
        &self,
        masks: [(Dimension, R); P],
    ) -> Result<TensorView<T, TensorMask<T, &S, D>, D>, IndexRangeValidationError<D, P>>
    where
        R: Into<IndexRange>,
    {
        TensorMask::from(&self.source, masks).map(|mask| TensorView::from(mask))
    }

    /**
     * Returns a TensorView with a mask taken in P dimensions, hiding the values **inside** the
     * range from view. Error cases are documented on [TensorMask](TensorMask). The TensorMask
     * mutably borrows the source, and can therefore mutate it if it implements TensorMut.
     *
     * This is a shorthand for constructing the TensorView from this TensorView. See
     * [`Tensor::mask`](Tensor::mask).
     */
    pub fn mask_mut<R, const P: usize>(
        &mut self,
        masks: [(Dimension, R); P],
    ) -> Result<TensorView<T, TensorMask<T, &mut S, D>, D>, IndexRangeValidationError<D, P>>
    where
        R: Into<IndexRange>,
    {
        TensorMask::from(&mut self.source, masks).map(|mask| TensorView::from(mask))
    }

    /**
     * Returns a TensorView with a mask taken in P dimensions, hiding the values **inside** the
     * range from view. Error cases are documented on [TensorMask](TensorMask). The TensorMask
     * takes ownership of the source, and can therefore mutate it if it implements TensorMut.
     *
     * This is a shorthand for constructing the TensorView from this TensorView. See
     * [`Tensor::mask`](Tensor::mask).
     */
    pub fn mask_owned<R, const P: usize>(
        self,
        masks: [(Dimension, R); P],
    ) -> Result<TensorView<T, TensorMask<T, S, D>, D>, IndexRangeValidationError<D, P>>
    where
        R: Into<IndexRange>,
    {
        TensorMask::from(self.source, masks).map(|mask| TensorView::from(mask))
    }

    /**
     * Creates and returns a new tensor with all value pairs of two tensors with the same shape
     * mapped by a function. The value pairs are not copied for you, if you're using `Copy` types
     * or need to clone the values anyway, you can use
     * [`TensorView::elementwise`](TensorView::elementwise) instead.
     *
     * # Generics
     *
     * This method can be called with any right hand side that can be converted to a TensorView,
     * which includes `Tensor`, `&Tensor`, `&mut Tensor` as well as references to a `TensorView`.
     *
     * # Panics
     *
     * If the two tensors have different shapes.
     */
    #[track_caller]
    pub fn elementwise_reference<S2, I, M>(&self, rhs: I, mapping_function: M) -> Tensor<T, D>
    where
        I: Into<TensorView<T, S2, D>>,
        S2: TensorRef<T, D>,
        M: Fn(&T, &T) -> T,
    {
        self.elementwise_reference_less_generic(rhs.into(), mapping_function)
    }

    /**
     * Creates and returns a new tensor with all value pairs of two tensors with the same shape
     * mapped by a function. The mapping function also receives each index corresponding to the
     * value pairs. The value pairs are not copied for you, if you're using `Copy` types
     * or need to clone the values anyway, you can use
     * [`TensorView::elementwise_with_index`](TensorView::elementwise_with_index) instead.
     *
     * # Generics
     *
     * This method can be called with any right hand side that can be converted to a TensorView,
     * which includes `Tensor`, `&Tensor`, `&mut Tensor` as well as references to a `TensorView`.
     *
     * # Panics
     *
     * If the two tensors have different shapes.
     */
    #[track_caller]
    pub fn elementwise_reference_with_index<S2, I, M>(
        &self,
        rhs: I,
        mapping_function: M,
    ) -> Tensor<T, D>
    where
        I: Into<TensorView<T, S2, D>>,
        S2: TensorRef<T, D>,
        M: Fn([usize; D], &T, &T) -> T,
    {
        self.elementwise_reference_less_generic_with_index(rhs.into(), mapping_function)
    }

    #[track_caller]
    fn elementwise_reference_less_generic<S2, M>(
        &self,
        rhs: TensorView<T, S2, D>,
        mapping_function: M,
    ) -> Tensor<T, D>
    where
        S2: TensorRef<T, D>,
        M: Fn(&T, &T) -> T,
    {
        let left_shape = self.shape();
        let right_shape = rhs.shape();
        if left_shape != right_shape {
            panic!(
                "Dimensions of left and right tensors are not the same: (left: {:?}, right: {:?})",
                left_shape, right_shape
            );
        }
        let mapped = self
            .iter_reference()
            .zip(rhs.iter_reference())
            .map(|(x, y)| mapping_function(x, y))
            .collect();
        Tensor::from(left_shape, mapped)
    }

    #[track_caller]
    fn elementwise_reference_less_generic_with_index<S2, M>(
        &self,
        rhs: TensorView<T, S2, D>,
        mapping_function: M,
    ) -> Tensor<T, D>
    where
        S2: TensorRef<T, D>,
        M: Fn([usize; D], &T, &T) -> T,
    {
        let left_shape = self.shape();
        let right_shape = rhs.shape();
        if left_shape != right_shape {
            panic!(
                "Dimensions of left and right tensors are not the same: (left: {:?}, right: {:?})",
                left_shape, right_shape
            );
        }
        // we just checked both shapes were the same, so we don't need to propagate indexes
        // for both tensors because they'll be identical
        let mapped = self
            .iter_reference()
            .with_index()
            .zip(rhs.iter_reference())
            .map(|((i, x), y)| mapping_function(i, x, y))
            .collect();
        Tensor::from(left_shape, mapped)
    }

    /**
     * Returns a TensorView which makes the order of the data in this tensor appear to be in
     * a different order. The order of the dimension names is unchanged, although their lengths
     * may swap.
     *
     * This is a shorthand for constructing the TensorView from this TensorView.
     *
     * See also: [transpose](TensorView::transpose), [TensorTranspose](TensorTranspose)
     *
     * # Panics
     *
     * If the set of dimensions in the tensor does not match the set of dimensions provided. The
     * order need not match.
     */
    pub fn transpose_view(
        &self,
        dimensions: [Dimension; D],
    ) -> TensorView<T, TensorTranspose<T, &S, D>, D> {
        TensorView::from(TensorTranspose::from(&self.source, dimensions))
    }
}

impl<T, S, const D: usize> TensorView<T, S, D>
where
    S: TensorMut<T, D>,
{
    /**
     * Returns an iterator over mutable references to the data in this TensorView.
     */
    pub fn iter_reference_mut(&mut self) -> TensorReferenceMutIterator<T, S, D> {
        TensorReferenceMutIterator::from(&mut self.source)
    }
}

/**
 * TensorView methods which require only read access via a [TensorRef](TensorRef) source
 * and a clonable type.
 */
impl<T, S, const D: usize> TensorView<T, S, D>
where
    T: Clone,
    S: TensorRef<T, D>,
{
    /**
     * Gets a copy of the first value in this tensor.
     * For 0 dimensional tensors this is the only index `[]`, for 1 dimensional tensors this
     * is `[0]`, for 2 dimensional tensors `[0,0]`, etcetera.
     */
    pub fn first(&self) -> T {
        self.iter()
            .next()
            .expect("Tensors always have at least 1 element")
    }

    /**
     * Returns a new Tensor which has the same data as this tensor, but with the order of data
     * changed. The order of the dimension names is unchanged, although their lengths may swap.
     *
     * For example, with a `[("x", x), ("y", y)]` tensor you could call
     * `transpose(["y", "x"])` which would return a new tensor with a shape of
     * `[("x", y), ("y", x)]` where every (x,y) of its data corresponds to (y,x) in the original.
     *
     * This method need not shift *all* the dimensions though, you could also swap the width
     * and height of images in a tensor with a shape of
     * `[("batch", b), ("h", h), ("w", w), ("c", c)]` via `transpose(["batch", "w", "h", "c"])`
     * which would return a new tensor where all the images have been swapped over the diagonal.
     *
     * See also: [TensorAccess](TensorAccess), [reorder](TensorView::reorder)
     *
     * # Panics
     *
     * If the set of dimensions in the tensor does not match the set of dimensions provided. The
     * order need not match (and if the order does match, this function is just an expensive
     * clone).
     */
    #[track_caller]
    pub fn transpose(&self, dimensions: [Dimension; D]) -> Tensor<T, D> {
        let shape = self.shape();
        let mut reordered = self.reorder(dimensions);
        // Transposition is essentially reordering, but we retain the dimension name ordering
        // of the original order, this means we may swap dimension lengths, but the dimensions
        // will not change order.
        for d in 0..D {
            reordered.shape[d].0 = shape[d].0;
        }
        reordered
    }

    /**
     * Returns a new Tensor which has the same data as this tensor, but with the order of the
     * dimensions and corresponding order of data changed.
     *
     * For example, with a `[("x", x), ("y", y)]` tensor you could call
     * `reorder(["y", "x"])` which would return a new tensor with a shape of
     * `[("y", y), ("x", x)]` where every (y,x) of its data corresponds to (x,y) in the original.
     *
     * This method need not shift *all* the dimensions though, you could also swap the width
     * and height of images in a tensor with a shape of
     * `[("batch", b), ("h", h), ("w", w), ("c", c)]` via `reorder(["batch", "w", "h", "c"])`
     * which would return a new tensor where every (b,w,h,c) of its data corresponds to (b,h,w,c)
     * in the original.
     *
     * See also: [TensorAccess](TensorAccess), [transpose](TensorView::transpose)
     *
     * # Panics
     *
     * If the set of dimensions in the tensor does not match the set of dimensions provided. The
     * order need not match (and if the order does match, this function is just an expensive
     * clone).
     */
    #[track_caller]
    pub fn reorder(&self, dimensions: [Dimension; D]) -> Tensor<T, D> {
        let reorderd = match TensorAccess::try_from(&self.source, dimensions) {
            Ok(reordered) => reordered,
            Err(_error) => panic!(
                "Dimension names provided {:?} must be the same set of dimension names in the tensor: {:?}",
                dimensions,
                self.shape(),
            ),
        };
        let reorderd_shape = reorderd.shape();
        Tensor::from(reorderd_shape, reorderd.iter().collect())
    }

    /**
     * Creates and returns a new tensor with all values from the original with the
     * function applied to each. This can be used to change the type of the tensor
     * such as creating a mask:
     * ```
     * use easy_ml::tensors::Tensor;
     * use easy_ml::tensors::views::TensorView;
     * let x = TensorView::from(Tensor::from([("a", 2), ("b", 2)], vec![
     *    0.0, 1.2,
     *    5.8, 6.9
     * ]));
     * let y = x.map(|element| element > 2.0);
     * let result = Tensor::from([("a", 2), ("b", 2)], vec![
     *    false, false,
     *    true, true
     * ]);
     * assert_eq!(&y, &result);
     * ```
     */
    pub fn map<U>(&self, mapping_function: impl Fn(T) -> U) -> Tensor<U, D> {
        let mapped = self.iter().map(mapping_function).collect();
        Tensor::from(self.shape(), mapped)
    }

    /**
     * Creates and returns a new tensor with all values from the original and
     * the index of each value mapped by a function.
     */
    pub fn map_with_index<U>(&self, mapping_function: impl Fn([usize; D], T) -> U) -> Tensor<U, D> {
        let mapped = self
            .iter()
            .with_index()
            .map(|(i, x)| mapping_function(i, x))
            .collect();
        Tensor::from(self.shape(), mapped)
    }

    /**
     * Returns an iterator over copies of the data in this TensorView.
     */
    pub fn iter(&self) -> TensorIterator<T, S, D> {
        TensorIterator::from(&self.source)
    }

    /**
     * Creates and returns a new tensor with all value pairs of two tensors with the same shape
     * mapped by a function.
     *
     * ```
     * use easy_ml::tensors::Tensor;
     * use easy_ml::tensors::views::TensorView;
     * let lhs = TensorView::from(Tensor::from([("a", 4)], vec![1, 2, 3, 4]));
     * let rhs = TensorView::from(Tensor::from([("a", 4)], vec![0, 1, 2, 3]));
     * let multiplied = lhs.elementwise(&rhs, |l, r| l * r);
     * assert_eq!(
     *     multiplied,
     *     Tensor::from([("a", 4)], vec![0, 2, 6, 12])
     * );
     * ```
     *
     * # Generics
     *
     * This method can be called with any right hand side that can be converted to a TensorView,
     * which includes `Tensor`, `&Tensor`, `&mut Tensor` as well as references to a `TensorView`.
     *
     * # Panics
     *
     * If the two tensors have different shapes.
     */
    #[track_caller]
    pub fn elementwise<S2, I, M>(&self, rhs: I, mapping_function: M) -> Tensor<T, D>
    where
        I: Into<TensorView<T, S2, D>>,
        S2: TensorRef<T, D>,
        M: Fn(T, T) -> T,
    {
        self.elementwise_reference_less_generic(rhs.into(), |lhs, rhs| {
            mapping_function(lhs.clone(), rhs.clone())
        })
    }

    /**
     * Creates and returns a new tensor with all value pairs of two tensors with the same shape
     * mapped by a function. The mapping function also receives each index corresponding to the
     * value pairs.
     *
     * # Generics
     *
     * This method can be called with any right hand side that can be converted to a TensorView,
     * which includes `Tensor`, `&Tensor`, `&mut Tensor` as well as references to a `TensorView`.
     *
     * # Panics
     *
     * If the two tensors have different shapes.
     */
    #[track_caller]
    pub fn elementwise_with_index<S2, I, M>(&self, rhs: I, mapping_function: M) -> Tensor<T, D>
    where
        I: Into<TensorView<T, S2, D>>,
        S2: TensorRef<T, D>,
        M: Fn([usize; D], T, T) -> T,
    {
        self.elementwise_reference_less_generic_with_index(rhs.into(), |i, lhs, rhs| {
            mapping_function(i, lhs.clone(), rhs.clone())
        })
    }
}

/**
 * TensorView methods which require only read access via a scalar [TensorRef](TensorRef) source
 * and a clonable type.
 */
impl<T, S> TensorView<T, S, 0>
where
    T: Clone,
    S: TensorRef<T, 0>,
{
    /**
     * Returns a copy of the sole element in the 0 dimensional tensor.
     */
    pub fn scalar(&self) -> T {
        self.source.get_reference([]).unwrap().clone()
    }
}

/**
 * TensorView methods which require mutable access via a [TensorMut](TensorMut) source.
 */
impl<T, S, const D: usize> TensorView<T, S, D>
where
    T: Clone,
    S: TensorMut<T, D>,
{
    /**
     * Applies a function to all values in the tensor view, modifying
     * the tensor in place.
     */
    pub fn map_mut(&mut self, mapping_function: impl Fn(T) -> T) {
        self.iter_reference_mut()
            .for_each(|x| *x = mapping_function(x.clone()));
    }

    /**
     * Applies a function to all values and each value's index in the tensor view, modifying
     * the tensor view in place.
     */
    pub fn map_mut_with_index(&mut self, mapping_function: impl Fn([usize; D], T) -> T) {
        self.iter_reference_mut()
            .with_index()
            .for_each(|(i, x)| *x = mapping_function(i, x.clone()));
    }
}

impl<T, S> TensorView<T, S, 1>
where
    T: Numeric,
    for<'a> &'a T: NumericRef<T>,
    S: TensorRef<T, 1>,
{
    /**
     * Computes the scalar product of two equal length vectors. For two vectors `[a,b,c]` and
     * `[d,e,f]`, returns `a*d + b*e + c*f`. This is also known as the dot product.
     *
     * ```
     * use easy_ml::tensors::Tensor;
     * use easy_ml::tensors::views::TensorView;
     * let tensor_view = TensorView::from(Tensor::from([("sequence", 5)], vec![3, 4, 5, 6, 7]));
     * assert_eq!(tensor_view.scalar_product(&tensor_view), 3*3 + 4*4 + 5*5 + 6*6 + 7*7);
     * ```
     *
     * # Generics
     *
     * This method can be called with any right hand side that can be converted to a TensorView,
     * which includes `Tensor`, `&Tensor`, `&mut Tensor` as well as references to a `TensorView`.
     *
     * # Panics
     *
     * If the two vectors are not of equal length or their dimension names do not match.
     */
    // Would like this impl block to be in operations.rs too but then it would show first in the
    // TensorView docs which isn't ideal
    pub fn scalar_product<S2, I>(&self, rhs: I) -> T
    where
        I: Into<TensorView<T, S2, 1>>,
        S2: TensorRef<T, 1>,
    {
        self.scalar_product_less_generic(rhs.into())
    }
}

impl<T, S> TensorView<T, S, 2>
where
    T: Numeric,
    for<'a> &'a T: NumericRef<T>,
    S: TensorRef<T, 2>,
{
    /**
     * Returns the determinant of this square matrix, or None if the matrix
     * does not have a determinant. See [`linear_algebra`](super::linear_algebra::determinant_tensor())
     */
    pub fn determinant(&self) -> Option<T> {
        linear_algebra::determinant_tensor::<T, _, _>(self)
    }

    /**
     * Computes the inverse of a matrix provided that it exists. To have an inverse a
     * matrix must be square (same number of rows and columns) and it must also have a
     * non zero determinant. See [`linear_algebra`](super::linear_algebra::inverse_tensor())
     */
    pub fn inverse(&self) -> Option<Tensor<T, 2>> {
        linear_algebra::inverse_tensor::<T, _, _>(self)
    }

    /**
     * Computes the covariance matrix for this feature matrix along the specified feature
     * dimension in this matrix. See [`linear_algebra`](crate::linear_algebra::covariance()).
     */
    pub fn covariance(&self, feature_dimension: Dimension) -> Tensor<T, 2> {
        linear_algebra::covariance::<T, _, _>(self, feature_dimension)
    }
}

macro_rules! tensor_view_select_impl {
    (impl TensorView $d:literal 1) => {
        impl<T, S> TensorView<T, S, $d>
        where
            S: TensorRef<T, $d>,
        {
            /**
             * Selects the provided dimension name and index pairs in this TensorView, returning a
             * TensorView which has fewer dimensions than this TensorView, with the removed dimensions
             * always indexed as the provided values.
             *
             * This is a shorthand for manually constructing the TensorView and
             * [TensorIndex](TensorIndex)
             *
             * Note: due to limitations in Rust's const generics support, this method is only
             * implemented for `provided_indexes` of length 1 and `D` from 1 to 6. You can fall
             * back to manual construction to create `TensorIndex`es with multiple provided
             * indexes if you need to reduce dimensionality by more than 1 dimension at a time.
             */
            #[track_caller]
            pub fn select(
                &self,
                provided_indexes: [(Dimension, usize); 1],
            ) -> TensorView<T, TensorIndex<T, &S, $d, 1>, { $d - 1 }> {
                TensorView::from(TensorIndex::from(&self.source, provided_indexes))
            }

            /**
             * Selects the provided dimension name and index pairs in this TensorView, returning a
             * TensorView which has fewer dimensions than this Tensor, with the removed dimensions
             * always indexed as the provided values. The TensorIndex mutably borrows this
             * Tensor, and can therefore mutate it
             *
             * See [select](TensorView::select)
             */
            #[track_caller]
            pub fn select_mut(
                &mut self,
                provided_indexes: [(Dimension, usize); 1],
            ) -> TensorView<T, TensorIndex<T, &mut S, $d, 1>, { $d - 1 }> {
                TensorView::from(TensorIndex::from(&mut self.source, provided_indexes))
            }

            /**
             * Selects the provided dimension name and index pairs in this TensorView, returning a
             * TensorView which has fewer dimensions than this Tensor, with the removed dimensions
             * always indexed as the provided values. The TensorIndex takes ownership of this
             * Tensor, and can therefore mutate it
             *
             * See [select](TensorView::select)
             */
            #[track_caller]
            pub fn select_owned(
                self,
                provided_indexes: [(Dimension, usize); 1],
            ) -> TensorView<T, TensorIndex<T, S, $d, 1>, { $d - 1 }> {
                TensorView::from(TensorIndex::from(self.source, provided_indexes))
            }
        }
    };
}

tensor_view_select_impl!(impl TensorView 6 1);
tensor_view_select_impl!(impl TensorView 5 1);
tensor_view_select_impl!(impl TensorView 4 1);
tensor_view_select_impl!(impl TensorView 3 1);
tensor_view_select_impl!(impl TensorView 2 1);
tensor_view_select_impl!(impl TensorView 1 1);

macro_rules! tensor_view_expand_impl {
    (impl Tensor $d:literal 1) => {
        impl<T, S> TensorView<T, S, $d>
        where
            S: TensorRef<T, $d>,
        {
            /**
             * Expands the dimensionality of this tensor by adding dimensions of length 1 at
             * a particular position within the shape, returning a TensorView which has more
             * dimensions than this TensorView.
             *
             * This is a shorthand for manually constructing the TensorView and
             * [TensorExpansion](TensorExpansion)
             *
             * Note: due to limitations in Rust's const generics support, this method is only
             * implemented for `extra_dimension_names` of length 1 and `D` from 0 to 5. You can
             * fall back to manual construction to create `TensorExpansion`s with multiple provided
             * indexes if you need to increase dimensionality by more than 1 dimension at a time.
             */
            #[track_caller]
            pub fn expand(
                &self,
                extra_dimension_names: [(usize, Dimension); 1],
            ) -> TensorView<T, TensorExpansion<T, &S, $d, 1>, { $d + 1 }> {
                TensorView::from(TensorExpansion::from(&self.source, extra_dimension_names))
            }

            /**
             * Expands the dimensionality of this tensor by adding dimensions of length 1 at
             * a particular position within the shape, returning a TensorView which has more
             * dimensions than this Tensor. The TensorIndex mutably borrows this
             * Tensor, and can therefore mutate it
             *
             * See [expand](Tensor::expand)
             */
            #[track_caller]
            pub fn expand_mut(
                &mut self,
                extra_dimension_names: [(usize, Dimension); 1],
            ) -> TensorView<T, TensorExpansion<T, &mut S, $d, 1>, { $d + 1 }> {
                TensorView::from(TensorExpansion::from(
                    &mut self.source,
                    extra_dimension_names,
                ))
            }

            /**
             * Expands the dimensionality of this tensor by adding dimensions of length 1 at
             * a particular position within the shape, returning a TensorView which has more
             * dimensions than this Tensor. The TensorIndex takes ownership of this
             * Tensor, and can therefore mutate it
             *
             * See [expand](Tensor::expand)
             */
            #[track_caller]
            pub fn expand_owned(
                self,
                extra_dimension_names: [(usize, Dimension); 1],
            ) -> TensorView<T, TensorExpansion<T, S, $d, 1>, { $d + 1 }> {
                TensorView::from(TensorExpansion::from(self.source, extra_dimension_names))
            }
        }
    };
}

tensor_view_expand_impl!(impl Tensor 0 1);
tensor_view_expand_impl!(impl Tensor 1 1);
tensor_view_expand_impl!(impl Tensor 2 1);
tensor_view_expand_impl!(impl Tensor 3 1);
tensor_view_expand_impl!(impl Tensor 4 1);
tensor_view_expand_impl!(impl Tensor 5 1);

/**
 * Debug implementations for TensorView additionally show the visible data and visible dimensions
 * reported by the source as fields. This is in addition to recursive debug content of the actual
 * source.
 */
impl<T, S, const D: usize> std::fmt::Debug for TensorView<T, S, D>
where
    T: std::fmt::Debug,
    S: std::fmt::Debug + TensorRef<T, D>,
{
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        f.debug_struct("TensorView")
            .field("visible", &DebugSourceVisible::from(&self.source))
            .field("shape", &self.source.view_shape())
            .field("source", &self.source)
            .finish()
    }
}

struct DebugSourceVisible<T, S, const D: usize> {
    source: S,
    _type: PhantomData<T>,
}

impl<T, S, const D: usize> DebugSourceVisible<T, S, D>
where
    T: std::fmt::Debug,
    S: std::fmt::Debug + TensorRef<T, D>,
{
    fn from(source: S) -> DebugSourceVisible<T, S, D> {
        DebugSourceVisible {
            source,
            _type: PhantomData,
        }
    }
}

impl<T, S, const D: usize> std::fmt::Debug for DebugSourceVisible<T, S, D>
where
    T: std::fmt::Debug,
    S: std::fmt::Debug + TensorRef<T, D>,
{
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        f.debug_list()
            .entries(TensorReferenceIterator::from(&self.source))
            .finish()
    }
}

#[test]
fn test_debug() {
    let x = Tensor::from([("rows", 3), ("columns", 4)], (0..12).collect());
    let view = TensorView::from(&x);
    let debugged = format!("{:?}\n{:?}", x, view);
    assert_eq!(
        debugged,
        r#"Tensor { data: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], shape: [("rows", 3), ("columns", 4)], strides: [4, 1] }
TensorView { visible: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], shape: [("rows", 3), ("columns", 4)], source: Tensor { data: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], shape: [("rows", 3), ("columns", 4)], strides: [4, 1] } }"#
    )
}

#[test]
fn test_debug_clipped() {
    let x = Tensor::from([("rows", 2), ("columns", 3)], (0..6).collect());
    let view = TensorView::from(&x)
        .range_owned([("columns", IndexRange::new(1, 2))])
        .unwrap();
    let debugged = format!("{:#?}\n{:#?}", x, view);
    println!("{:#?}\n{:#?}", x, view);
    assert_eq!(
        debugged,
        r#"Tensor {
    data: [
        0,
        1,
        2,
        3,
        4,
        5,
    ],
    shape: [
        (
            "rows",
            2,
        ),
        (
            "columns",
            3,
        ),
    ],
    strides: [
        3,
        1,
    ],
}
TensorView {
    visible: [
        1,
        2,
        4,
        5,
    ],
    shape: [
        (
            "rows",
            2,
        ),
        (
            "columns",
            2,
        ),
    ],
    source: TensorRange {
        source: Tensor {
            data: [
                0,
                1,
                2,
                3,
                4,
                5,
            ],
            shape: [
                (
                    "rows",
                    2,
                ),
                (
                    "columns",
                    3,
                ),
            ],
            strides: [
                3,
                1,
            ],
        },
        range: [
            IndexRange {
                start: 0,
                length: 2,
            },
            IndexRange {
                start: 1,
                length: 2,
            },
        ],
        _type: PhantomData<i32>,
    },
}"#
    )
}

/**
 * Any tensor view of a Displayable type implements Display
 *
 * You can control the precision of the formatting using format arguments, i.e.
 * `format!("{:.3}", tensor)`
 */
impl<T: std::fmt::Display, S, const D: usize> std::fmt::Display for TensorView<T, S, D>
where
    T: std::fmt::Display,
    S: TensorRef<T, D>,
{
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        crate::tensors::display::format_view(&self.source, f)
    }
}

/**
 * A Tensor can be converted to a TensorView of that Tensor.
 */
impl<T, const D: usize> From<Tensor<T, D>> for TensorView<T, Tensor<T, D>, D> {
    fn from(tensor: Tensor<T, D>) -> TensorView<T, Tensor<T, D>, D> {
        TensorView::from(tensor)
    }
}

/**
 * A reference to a Tensor can be converted to a TensorView of that referenced Tensor.
 */
impl<'a, T, const D: usize> From<&'a Tensor<T, D>> for TensorView<T, &'a Tensor<T, D>, D> {
    fn from(tensor: &Tensor<T, D>) -> TensorView<T, &Tensor<T, D>, D> {
        TensorView::from(tensor)
    }
}

/**
 * A mutable reference to a Tensor can be converted to a TensorView of that mutably referenced
 * Tensor.
 */
impl<'a, T, const D: usize> From<&'a mut Tensor<T, D>> for TensorView<T, &'a mut Tensor<T, D>, D> {
    fn from(tensor: &mut Tensor<T, D>) -> TensorView<T, &mut Tensor<T, D>, D> {
        TensorView::from(tensor)
    }
}

/**
 * A reference to a TensorView can be converted to an owned TensorView with a reference to the
 * source type of that first TensorView.
 */
impl<'a, T, S, const D: usize> From<&'a TensorView<T, S, D>> for TensorView<T, &'a S, D>
where
    S: TensorRef<T, D>,
{
    fn from(tensor_view: &TensorView<T, S, D>) -> TensorView<T, &S, D> {
        TensorView::from(tensor_view.source_ref())
    }
}

/**
 * A mutable reference to a TensorView can be converted to an owned TensorView with a mutable
 * reference to the source type of that first TensorView.
 */
impl<'a, T, S, const D: usize> From<&'a mut TensorView<T, S, D>> for TensorView<T, &'a mut S, D>
where
    S: TensorRef<T, D>,
{
    fn from(tensor_view: &mut TensorView<T, S, D>) -> TensorView<T, &mut S, D> {
        TensorView::from(tensor_view.source_ref_mut())
    }
}