1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License in the LICENSE-APACHE file or at:
//     https://www.apache.org/licenses/LICENSE-2.0

//! Type conversion, success expected
//!
//! Use [`Conv`] and [`Cast`] when:
//!
//! -   [`From`] and [`Into`] are not enough
//! -   it is expected that the value can be represented exactly by the target type
//! -   you could use `as`, but want some assurance it's doing the right thing
//! -   you are converting numbers (future versions *might* consider supporting
//!     other conversions)
//!
//! Use [`ConvFloat`] and [`CastFloat`] when:
//!
//! -   You are converting from `f32` or `f64`
//! -   You specifically want the nearest or ceiling or floor, but don't need
//!     detailed control over rounding (e.g. round-to-even)
//!
//! ## Assertions
//!
//! All type conversions which are potentially fallible assert on failure in
//! debug builds. In release builds assertions may be omitted, thus making
//! incorrect conversions possible.
//!
//! If the `always_assert` feature flag is set, assertions will be turned on in
//! all builds. Some additional feature flags are available for finer-grained
//! control (see `Cargo.toml`).

#![deny(missing_docs)]
#![cfg_attr(not(feature = "std"), no_std)]
#![cfg_attr(doc_cfg, feature(doc_cfg))]

use core::mem::size_of;

/// Like [`From`], but supporting potentially-fallible conversions
///
/// This trait is intended to replace *many* uses of the `as` keyword for
/// conversions, though not all.
/// Very roughly, it is `T::try_from(x).unwrap()`, restricted to numeric
/// conversions (or like [`From`] but with more assumptions).
///
/// -   Conversions should preserve values precisely
/// -   Conversions should succeed, but may fail (panic)
/// -   We assume that `isize` and `usize` are 32 or 64 bits
///
/// Fallible conversions are allowed. In Debug builds failure must always panic
/// but in Release builds this is not required (similar to overflow checks on
/// integer arithmetic).
///
/// Note that you *may not* want to use this where loss of precision is
/// acceptable, e.g. if an approximate conversion `x as f64` suffices.
///
/// [`From`]: core::convert::From
pub trait Conv<T> {
    /// Convert from `T` to `Self` (see trait doc)
    fn conv(v: T) -> Self;
}

impl<T> Conv<T> for T {
    fn conv(v: T) -> Self {
        v
    }
}

macro_rules! impl_via_from {
    ($x:ty: $y:ty) => {
        impl Conv<$x> for $y {
            #[inline]
            fn conv(x: $x) -> $y {
                <$y>::from(x)
            }
        }
    };
    ($x:ty: $y:ty, $($yy:ty),+) => {
        impl_via_from!($x: $y);
        impl_via_from!($x: $($yy),+);
    };
}

impl_via_from!(f32: f64);
impl_via_from!(i8: f32, f64, i16, i32, i64, i128);
impl_via_from!(i16: f32, f64, i32, i64, i128);
impl_via_from!(i32: f64, i64, i128);
impl_via_from!(i64: i128);
impl_via_from!(u8: f32, f64, i16, i32, i64, i128);
impl_via_from!(u8: u16, u32, u64, u128);
impl_via_from!(u16: f32, f64, i32, i64, i128, u32, u64, u128);
impl_via_from!(u32: f64, i64, i128, u64, u128);
impl_via_from!(u64: i128, u128);

macro_rules! impl_via_as_neg_check {
    ($x:ty: $y:ty) => {
        impl Conv<$x> for $y {
            #[inline]
            fn conv(x: $x) -> $y {
                #[cfg(any(debug_assertions, feature = "assert_non_neg"))]
                assert!(x >= 0);
                x as $y
            }
        }
    };
    ($x:ty: $y:ty, $($yy:ty),+) => {
        impl_via_as_neg_check!($x: $y);
        impl_via_as_neg_check!($x: $($yy),+);
    };
}

impl_via_as_neg_check!(i8: u8, u16, u32, u64, u128);
impl_via_as_neg_check!(i16: u16, u32, u64, u128);
impl_via_as_neg_check!(i32: u32, u64, u128);
impl_via_as_neg_check!(i64: u64, u128);
impl_via_as_neg_check!(i128: u128);

// Assumption: $y::MAX is representable as $x
macro_rules! impl_via_as_max_check {
    ($x:ty: $y:tt) => {
        impl Conv<$x> for $y {
            #[inline]
            fn conv(x: $x) -> $y {
                #[cfg(any(debug_assertions, feature = "assert_range"))]
                assert!(x <= core::$y::MAX as $x);
                x as $y
            }
        }
    };
    ($x:ty: $y:tt, $($yy:tt),+) => {
        impl_via_as_max_check!($x: $y);
        impl_via_as_max_check!($x: $($yy),+);
    };
}

impl_via_as_max_check!(u8: i8);
impl_via_as_max_check!(u16: i8, i16, u8);
impl_via_as_max_check!(u32: i8, i16, i32, u8, u16);
impl_via_as_max_check!(u64: i8, i16, i32, i64, u8, u16, u32);
impl_via_as_max_check!(u128: i8, i16, i32, i64, i128);
impl_via_as_max_check!(u128: u8, u16, u32, u64);

// Assumption: $y::MAX and $y::MIN are representable as $x
macro_rules! impl_via_as_range_check {
    ($x:ty: $y:tt) => {
        impl Conv<$x> for $y {
            #[inline]
            fn conv(x: $x) -> $y {
                #[cfg(any(debug_assertions, feature = "assert_range"))]
                assert!(core::$y::MIN as $x <= x && x <= core::$y::MAX as $x);
                x as $y
            }
        }
    };
    ($x:ty: $y:tt, $($yy:tt),+) => {
        impl_via_as_range_check!($x: $y);
        impl_via_as_range_check!($x: $($yy),+);
    };
}

impl_via_as_range_check!(i16: i8, u8);
impl_via_as_range_check!(i32: i8, i16, u8, u16);
impl_via_as_range_check!(i64: i8, i16, i32, u8, u16, u32);
impl_via_as_range_check!(i128: i8, i16, i32, i64, u8, u16, u32, u64);

macro_rules! impl_int_signed_dest {
    ($x:ty: $y:tt) => {
        impl Conv<$x> for $y {
            #[inline]
            fn conv(x: $x) -> $y {
                if size_of::<$x>() == size_of::<$y>() {
                    #[cfg(any(debug_assertions, feature = "assert_range"))]
                    assert!(x <= core::$y::MAX as $x);
                } else if size_of::<$x>() > size_of::<$y>() {
                    #[cfg(any(debug_assertions, feature = "assert_range"))]
                    assert!(core::$y::MIN as $x <= x && x <= core::$y::MAX as $x);
                }
                x as $y
            }
        }
    };
    ($x:ty: $y:tt, $($yy:tt),+) => {
        impl_int_signed_dest!($x: $y);
        impl_int_signed_dest!($x: $($yy),+);
    };
}

impl_int_signed_dest!(i8: isize);
impl_int_signed_dest!(i16: isize);
impl_int_signed_dest!(i32: isize);
impl_int_signed_dest!(i64: isize);
impl_int_signed_dest!(i128: isize);
impl_int_signed_dest!(u8: isize);
impl_int_signed_dest!(u16: isize);
impl_int_signed_dest!(u32: isize);
impl_int_signed_dest!(u64: isize);
impl_int_signed_dest!(u128: isize);
impl_int_signed_dest!(isize: i8, i16, i32, i64, i128);
impl_int_signed_dest!(usize: i8, i16, i32, i64, i128, isize);

macro_rules! impl_int_signed_to_unsigned {
    ($x:ty: $y:tt) => {
        impl Conv<$x> for $y {
            #[inline]
            fn conv(x: $x) -> $y {
                #[cfg(any(debug_assertions, feature = "assert_non_neg"))]
                assert!(x >= 0);
                if size_of::<$x>() > size_of::<$y>() {
                    #[cfg(any(debug_assertions, feature = "assert_range"))]
                    assert!(x <= core::$y::MAX as $x);
                }
                x as $y
            }
        }
    };
    ($x:ty: $y:tt, $($yy:tt),+) => {
        impl_int_signed_to_unsigned!($x: $y);
        impl_int_signed_to_unsigned!($x: $($yy),+);
    };
}

impl_int_signed_to_unsigned!(i8: usize);
impl_int_signed_to_unsigned!(i16: usize);
impl_int_signed_to_unsigned!(i32: usize);
impl_int_signed_to_unsigned!(i64: usize);
impl_int_signed_to_unsigned!(i128: usize);
impl_int_signed_to_unsigned!(isize: u8, u16, u32, u64, u128, usize);

macro_rules! impl_int_unsigned_to_unsigned {
    ($x:ty: $y:tt) => {
        impl Conv<$x> for $y {
            #[inline]
            fn conv(x: $x) -> $y {
                if size_of::<$x>() > size_of::<$y>() {
                    #[cfg(any(debug_assertions, feature = "assert_range"))]
                    assert!(x <= core::$y::MAX as $x);
                }
                x as $y
            }
        }
    };
    ($x:ty: $y:tt, $($yy:tt),+) => {
        impl_int_unsigned_to_unsigned!($x: $y);
        impl_int_unsigned_to_unsigned!($x: $($yy),+);
    };
}

impl_int_unsigned_to_unsigned!(u8: usize);
impl_int_unsigned_to_unsigned!(u16: usize);
impl_int_unsigned_to_unsigned!(u32: usize);
impl_int_unsigned_to_unsigned!(u64: usize);
impl_int_unsigned_to_unsigned!(u128: usize);
impl_int_unsigned_to_unsigned!(usize: u8, u16, u32, u64, u128);

impl Conv<f64> for f32 {
    #[inline]
    fn conv(x: f64) -> f32 {
        let y = x as f32;
        #[cfg(any(debug_assertions, feature = "assert_float"))]
        assert_eq!(x, y as f64);
        y
    }
}

macro_rules! impl_via_digits_check {
    ($x:ty: $y:tt) => {
        impl Conv<$x> for $y {
            #[inline]
            fn conv(x: $x) -> $y {
                if cfg!(any(debug_assertions, feature = "assert_digits")) {
                    let src_ty_bits = u32::conv(size_of::<$x>() * 8);
                    let src_digits = src_ty_bits - (x.leading_zeros() + x.trailing_zeros());
                    let dst_digits = core::$y::MANTISSA_DIGITS;
                    assert!(src_digits <= dst_digits);
                }
                x as $y
            }
        }
    };
    ($x:ty: $y:tt, $($yy:tt),+) => {
        impl_via_digits_check!($x: $y);
        impl_via_digits_check!($x: $($yy),+);
    };
}

impl_via_digits_check!(i32: f32);
impl_via_digits_check!(u32: f32);
impl_via_digits_check!(i64: f32, f64);
impl_via_digits_check!(u64: f32, f64);
impl_via_digits_check!(i128: f32, f64);
impl_via_digits_check!(u128: f32, f64);
impl_via_digits_check!(isize: f32, f64);
impl_via_digits_check!(usize: f32, f64);

#[cfg(all(not(feature = "std"), feature = "libm"))]
trait FloatRound {
    fn round(self) -> Self;
    fn floor(self) -> Self;
    fn ceil(self) -> Self;
}
#[cfg(all(not(feature = "std"), feature = "libm"))]
impl FloatRound for f32 {
    fn round(self) -> Self {
        libm::roundf(self)
    }
    fn floor(self) -> Self {
        libm::floorf(self)
    }
    fn ceil(self) -> Self {
        libm::ceilf(self)
    }
}
#[cfg(all(not(feature = "std"), feature = "libm"))]
impl FloatRound for f64 {
    fn round(self) -> Self {
        libm::round(self)
    }
    fn floor(self) -> Self {
        libm::floor(self)
    }
    fn ceil(self) -> Self {
        libm::ceil(self)
    }
}

/// Nearest / floor / ceil conversions from floating point types
///
/// This trait is explicitly for conversions from floating-point values to
/// integers.
///
/// If the source value is out-of-range or not-a-number then the conversion must
/// fail with a panic.
#[cfg(any(feature = "std", feature = "libm"))]
#[cfg_attr(doc_cfg, doc(cfg(any(feature = "std", feature = "libm"))))]
pub trait ConvFloat<T> {
    /// Convert to integer (truncate)
    ///
    /// Rounds towards zero (same as `as`).
    fn conv_trunc(x: T) -> Self;
    /// Convert to the nearest integer
    ///
    /// Half-way cases are rounded away from `0`.
    fn conv_nearest(x: T) -> Self;
    /// Convert the floor to an integer
    ///
    /// Returns the largest integer less than or equal to `x`.
    fn conv_floor(x: T) -> Self;
    /// Convert the ceiling to an integer
    ///
    /// Returns the smallest integer greater than or equal to `x`.
    fn conv_ceil(x: T) -> Self;
}

#[cfg(any(feature = "std", feature = "libm"))]
#[cfg_attr(doc_cfg, doc(cfg(any(feature = "std", feature = "libm"))))]
macro_rules! impl_float {
    ($x:ty: $y:tt) => {
        impl ConvFloat<$x> for $y {
            #[inline]
            fn conv_trunc(x: $x) -> $y {
                if cfg!(any(debug_assertions, feature = "assert_float")) {
                    // Tested: these limits work for $x=f32 and all $y except u128
                    const LBOUND: $x = core::$y::MIN as $x - 1.0;
                    const UBOUND: $x = core::$y::MAX as $x + 1.0;
                    assert!(x > LBOUND && x < UBOUND);
                }
                x as $y
            }
            #[inline]
            fn conv_nearest(x: $x) -> $y {
                let x = x.round();
                if cfg!(any(debug_assertions, feature = "assert_float")) {
                    // Tested: these limits work for $x=f32 and all $y except u128
                    const LBOUND: $x = core::$y::MIN as $x;
                    const UBOUND: $x = core::$y::MAX as $x + 1.0;
                    assert!(x >= LBOUND && x < UBOUND);
                }
                x as $y
            }
            #[inline]
            fn conv_floor(x: $x) -> $y {
                let x = x.floor();
                if cfg!(any(debug_assertions, feature = "assert_float")) {
                    const LBOUND: $x = core::$y::MIN as $x;
                    const UBOUND: $x = core::$y::MAX as $x + 1.0;
                    assert!(x >= LBOUND && x < UBOUND);
                }
                x as $y
            }
            #[inline]
            fn conv_ceil(x: $x) -> $y {
                let x = x.ceil();
                if cfg!(any(debug_assertions, feature = "assert_float")) {
                    const LBOUND: $x = core::$y::MIN as $x;
                    const UBOUND: $x = core::$y::MAX as $x + 1.0;
                    assert!(x >= LBOUND && x < UBOUND);
                }
                x as $y
            }
        }
    };
    ($x:ty: $y:tt, $($yy:tt),+) => {
        impl_float!($x: $y);
        impl_float!($x: $($yy),+);
    };
}

// Assumption: usize < 128-bit
#[cfg(any(feature = "std", feature = "libm"))]
impl_float!(f32: i8, i16, i32, i64, i128, isize);
#[cfg(any(feature = "std", feature = "libm"))]
impl_float!(f32: u8, u16, u32, u64, usize);
#[cfg(any(feature = "std", feature = "libm"))]
impl_float!(f64: i8, i16, i32, i64, i128, isize);
#[cfg(any(feature = "std", feature = "libm"))]
impl_float!(f64: u8, u16, u32, u64, u128, usize);

#[cfg(any(feature = "std", feature = "libm"))]
impl ConvFloat<f32> for u128 {
    #[inline]
    fn conv_trunc(x: f32) -> u128 {
        #[cfg(any(debug_assertions, feature = "assert_float"))]
        assert!(x >= 0.0 && x.is_finite());
        x as u128
    }
    #[inline]
    fn conv_nearest(x: f32) -> u128 {
        let x = x.round();
        // Note: f32::MAX < u128::MAX
        #[cfg(any(debug_assertions, feature = "assert_float"))]
        assert!(x >= 0.0 && x.is_finite());
        x as u128
    }
    #[inline]
    fn conv_floor(x: f32) -> u128 {
        ConvFloat::conv_trunc(x)
    }
    #[inline]
    fn conv_ceil(x: f32) -> u128 {
        let x = x.ceil();
        #[cfg(any(debug_assertions, feature = "assert_float"))]
        assert!(x >= 0.0 && x.is_finite());
        x as u128
    }
}

/// Like [`Into`], but for [`Conv`]
pub trait Cast<T> {
    /// Cast from `Self` to `T` (see trait doc)
    fn cast(self) -> T;
}

impl<S, T: Conv<S>> Cast<T> for S {
    fn cast(self) -> T {
        T::conv(self)
    }
}

/// Like [`Into`], but for [`ConvFloat`]
#[cfg(any(feature = "std", feature = "libm"))]
#[cfg_attr(doc_cfg, doc(cfg(any(feature = "std", feature = "libm"))))]
pub trait CastFloat<T> {
    /// Cast to integer, truncating
    ///
    /// Rounds towards zero (same as `as`).
    fn cast_trunc(self) -> T;
    /// Cast to the nearest integer
    ///
    /// Half-way cases are rounded away from `0`.
    fn cast_nearest(self) -> T;
    /// Cast the floor to an integer
    ///
    /// Returns the largest integer less than or equal to `self`.
    fn cast_floor(self) -> T;
    /// Cast the ceiling to an integer
    ///
    /// Returns the smallest integer greater than or equal to `self`.
    fn cast_ceil(self) -> T;
}

#[cfg(any(feature = "std", feature = "libm"))]
impl<S, T: ConvFloat<S>> CastFloat<T> for S {
    fn cast_trunc(self) -> T {
        T::conv_trunc(self)
    }
    fn cast_nearest(self) -> T {
        T::conv_nearest(self)
    }
    fn cast_floor(self) -> T {
        T::conv_floor(self)
    }
    fn cast_ceil(self) -> T {
        T::conv_ceil(self)
    }
}