1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
//! This crate provides macros for easy code duplication with substitution:
//!
//! - [`duplicate_item`]: Attribute macro.
//! - [`duplicate`]: Function-like procedural macro.
//!
//! The only major difference between the two is where you can use them.
//! Therefore, the following section presents how to use
//! [`duplicate_item`] only. Refer to [`duplicate`]'s documentation for how it
//! defers from what is specified below.
//!
//! [`duplicate_item`]: attr.duplicate_item.html
//! [`duplicate`]: macro.duplicate.html
//! # Usage
//!
//! Say you have a trait with a method `is_max` that should return `true` if the
//! value of the object is the maximum allowed and `false` otherwise:
//! ```
//! trait IsMax {
//!   fn is_max(&self) -> bool;
//! }
//! ```
//! You would like to implement this trait for the three integer types `u8`,
//! `u16`, and `u32`:
//!
//! ```
//! # trait IsMax {fn is_max(&self) -> bool;}
//! impl IsMax for u8 {
//!   fn is_max(&self) -> bool {
//!     *self == 255
//!   }
//! }
//! impl IsMax for u16 {
//!   fn is_max(&self) -> bool {
//!     *self == 65_535
//!   }
//! }
//! impl IsMax for u32 {
//!   fn is_max(&self) -> bool {
//!     *self == 4_294_967_295
//!   }
//! }
//! ```
//! This is a lot of repetition. Only the type and the maximum value are
//! actually different between the three implementations. This might not be much
//! in our case, but imagine doing this for all the integer types (10, as of the
//! last count.) We can use the `duplicate_item` attribute to avoid repeating
//! ourselves:
//!
//! ```
//! # trait IsMax {fn is_max(&self) -> bool;}
//! use duplicate::duplicate_item;
//! #[duplicate_item(
//!   int_type  max_value;
//!   [ u8 ]    [ 255 ];
//!   [ u16 ]   [ 65_535 ];
//!   [ u32 ]   [ 4_294_967_295 ];
//! )]
//! impl IsMax for int_type {
//!   fn is_max(&self) -> bool {
//!     *self == max_value
//!   }
//! }
//!
//! assert!(!42u8.is_max());
//! assert!(!42u16.is_max());
//! assert!(!42u32.is_max());
//! ```
//! The above code will expand to the three implementations before it.
//! The attribute invocation specifies that the following item should be
//! substituted by three duplicates of itself. Additionally, each occurrence of
//! the identifier `int_type` in the first duplicate should be replaced by `u8`,
//! in the second duplicate by `u16`, and in the last by `u32`. Likewise, each
//! occurrence of `max_value` should be replaced by `255`, `65_535`, and
//! `4_294_967_295` in the first, second, and third duplicates respectively.
//!
//! `int_type` and `max_value` are called _substitution identifiers_, while `[
//! u8 ]`, `[ u16 ]`, and `[ u32 ]` are each _substitutions_ for `int_type` and
//! `[255]`, `[65_535]`, and `[4_294_967_295]` are substitutions for
//! `max_value`. Each pair of substitutions for the identifiers is called a
//! _substitution group_. Substitution groups must be seperated by `;` and the
//! number of duplicates made is equal to the number of subsitution groups.
//!
//! Substitution identifiers must be valid Rust identifiers.
//! The code inside substitutions can be arbitrary, as long as the expanded code
//! is valid.
//!
//! ## Parameterized Substitution
//!
//! Say we have a struct that wraps a vector and we want to give
//! access to the vector's `get` and `get_mut` methods directly:
//!
//! ```
//! struct VecWrap<T>(Vec<T>);
//!
//! impl<T> VecWrap<T> {
//!   pub fn get(&self, idx: usize) -> Option<&T> {
//!     self.0.get(idx)
//!   }
//!   pub fn get_mut(&mut self, idx: usize) -> Option<&mut T> {
//!     self.0.get_mut(idx)
//!   }
//! }
//!
//! let mut vec = VecWrap(vec![1,2,3]);
//! assert_eq!(*vec.get(0).unwrap(), 1);
//! *vec.get_mut(1).unwrap() = 5;
//! assert_eq!(*vec.get(1).unwrap(), 5);
//! ```
//!
//! Even though the implementations of the two versions of `get` are almost
//! identical, we will always need to duplicate the code, because Rust cannot be
//! generic over mutability. _Parameterized substitution_ allows us to pass code
//! snippets to substitution identifiers to customize the substitution for that
//! specific use of the identifier. We can use it to help with the
//! implementation of constant and mutable versions of methods and functions.
//! The following `impl` is identical to the above code:
//!
//! ```
//! # use duplicate::duplicate_item;
//! # struct VecWrap<T>(Vec<T>);
//! impl<T> VecWrap<T> {
//!   #[duplicate_item(
//!     method     reference(type);
//!     [get]      [& type];
//!     [get_mut]  [&mut type];
//!   )]
//!   pub fn method(self: reference([Self]), idx: usize) -> Option<reference([T])> {
//!     self.0.method(idx)
//!   }
//! }
//! # let mut vec = VecWrap(vec![1,2,3]);
//! # assert_eq!(*vec.get(0).unwrap(), 1);
//! # *vec.get_mut(1).unwrap() = 5;
//! # assert_eq!(*vec.get(1).unwrap(), 5);
//! ```
//!
//! In a `duplicate_item` invocation, if a substitution identifier is followed
//! by parenthises containing a list of parameters, they can be used in the
//! substitution. In this example, the `reference` identifier takes 1 parameter
//! named `type`, which is used in the substitutions to create either a shared
//! reference to the type or a mutable one. When using the `reference` in the
//! method declaration, we give it different types as arguments to construct
//! either shared or mutable references.
//! E.g. `reference([Self])` becomes `&Self` in the first duplicate and `&mut
//! Self` in the second. An argument can be any code snippet inside `[]`.
//!
//! A substitution identifier can take any number of parameters.
//! We can use this if we need to also provide the references with a lifetime:
//!
//! ```
//! # use duplicate::duplicate_item;
//! # struct VecWrap<T>(Vec<T>);
//! impl<T> VecWrap<T> {
//!   #[duplicate_item(
//!     method     reference(lifetime, type);
//!     [get]      [& 'lifetime type];
//!     [get_mut]  [& 'lifetime mut type];
//!   )]
//!   pub fn method<'a>(self: reference([a],[Self]),idx: usize) -> Option<reference([a],[T])> {
//!     self.0.method(idx)
//!   }
//! }
//! # let mut vec = VecWrap(vec![1,2,3]);
//! # assert_eq!(*vec.get(0).unwrap(), 1);
//! # *vec.get_mut(1).unwrap() = 5;
//! # assert_eq!(*vec.get(1).unwrap(), 5);
//! ```
//!
//! Here we pass the lifetime `'a` to the substitution as the first argument,
//! and the type as the second. Notice how the arguments are separated by a
//! comma. This results in the following code:
//!
//! ```
//! # struct VecWrap<T>(Vec<T>);
//! impl<T> VecWrap<T> {
//!   pub fn get<'a>(self: &'a Self, idx: usize) -> Option<&'a T> {
//!     self.0.get(idx)
//!   }
//!   pub fn get_mut<'a>(self: &'a mut Self, idx: usize) -> Option<&'a mut T> {
//!     self.0.get_mut(idx)
//!   }
//! }
//! # let mut vec = VecWrap(vec![1,2,3]);
//! # assert_eq!(*vec.get(0).unwrap(), 1);
//! # *vec.get_mut(1).unwrap() = 5;
//! # assert_eq!(*vec.get(1).unwrap(), 5);
//! ```
//!
//! Notice also the way we pass lifetimes to identifiers: `reference([a],
//! [Self])`. The lifetime is passed without the `'` prefix, which is instead
//! present in the substitution before the 	lifetime: `[& 'lifetime type]`.
//! This is because the rust syntax disallows lifetimes in brackets on their
//! own. Our solution is therefore a hacking of the system and not a property of
//! `duplicate_item` itself.
//!
//! ## Nested Invocation
//!
//! Imagine we have the following trait with the method `is_negative` that
//! should return `true` if the value of the object is negative and `false`
//! otherwise:
//! ```
//! trait IsNegative {
//!   fn is_negative(&self) -> bool;
//! }
//! ```
//! We want to implement this for the six integer types `u8`, `u16`, `u32`,
//! `i8`, `i16`, and `i32`. For the first three types, which are all unsigned,
//! the implementation of this trait should trivially return `false` as they
//! can't be negative. However, for the remaining, signed types their
//! implementations is identical (checking whether they are less than `0`), but,
//! of course, different from the first three:
//! ```
//! # trait IsNegative { fn is_negative(&self) -> bool;}
//! impl IsNegative for u8 {
//!   fn is_negative(&self) -> bool {
//!     false
//!   }
//! }
//! impl IsNegative for u16 {
//!   fn is_negative(&self) -> bool {
//!     false
//!   }
//! }
//! impl IsNegative for u32 {
//!   fn is_negative(&self) -> bool {
//!     false
//!   }
//! }
//! impl IsNegative for i8 {
//!   fn is_negative(&self) -> bool {
//!     *self < 0
//!   }
//! }
//! impl IsNegative for i16 {
//!   fn is_negative(&self) -> bool {
//!     *self < 0
//!   }
//! }
//! impl IsNegative for i32 {
//!   fn is_negative(&self) -> bool {
//!     *self <  0
//!   }
//! }
//! # assert!(!42u8.is_negative());
//! # assert!(!42u16.is_negative());
//! # assert!(!42u32.is_negative());
//! # assert!(!42i8.is_negative());
//! # assert!(!42i16.is_negative());
//! # assert!(!42i32.is_negative());
//! ```
//!
//! Notice how the code repetition is split over 2 axes: 1) They all implement
//! the same trait 2) the method implementations of the first 3 are identical to
//! each other but different to the next 3, which are also mutually identical.
//! To implement this using only the syntax we have already seen, we could do
//! something like this:
//!
//! ```
//! # trait IsNegative { fn is_negative(&self) -> bool;}
//! # use duplicate::duplicate_item;
//! #[duplicate_item(
//!   int_type implementation;
//!   [u8]     [false];
//!   [u16]    [false];
//!   [u32]    [false];
//!   [i8]     [*self < 0];
//!   [i16]    [*self < 0];
//!   [i32]    [*self < 0]
//! )]
//! impl IsNegative for int_type {
//!   fn is_negative(&self) -> bool {
//!     implementation
//!   }
//! }
//!
//! assert!(!42u8.is_negative());
//! assert!(!42u16.is_negative());
//! assert!(!42u32.is_negative());
//! assert!(!42i8.is_negative());
//! assert!(!42i16.is_negative());
//! assert!(!42i32.is_negative());
//! ```
//!
//! However, ironically, we here had to repeat ourselves in the macro invocation
//! instead of the code: we needed to repeat the implementations `[ false ]` and
//! `[ *self < 0 ]` three times each. We can utilize _nested invocation_ to
//! remove the last bit of repetition:
//!
//! ```
//! # trait IsNegative { fn is_negative(&self) -> bool;}
//! # use duplicate::duplicate_item;
//! #[duplicate_item(
//!   int_type implementation;
//!   duplicate!{
//!     [
//!       int_type_nested; [u8]; [u16]; [u32]
//!     ]
//!     [ int_type_nested ] [ false ];
//!   }
//!   duplicate!{
//!     [
//!       int_type_nested; [i8]; [i16]; [i32]
//!     ]
//!     [ int_type_nested ] [ *self < 0 ];
//!   }
//! )]
//! impl IsNegative for int_type {
//!   fn is_negative(&self) -> bool {
//!     implementation
//!   }
//! }
//!
//! assert!(!42u8.is_negative());
//! assert!(!42u16.is_negative());
//! assert!(!42u32.is_negative());
//! assert!(!42i8.is_negative());
//! assert!(!42i16.is_negative());
//! assert!(!42i32.is_negative());
//! ```
//!
//! We use `duplicate!{..}` to invoke the macro inside itself.
//! In our example, we have 2 invocations that each produce 3 substitution
//! groups, inserting the correct `implementation` for their signed or unsigned
//! types. The above nested invocation is equivalent to the previous, non-nested
//! invocation, and actually expands to it as an intermediate step before
//! expanding the outer-most invocation.
//!
//! Deeper levels of nested invocation are possible and work as expected.
//! There is no limit on the depth of nesting, however, as might be clear from
//! our example, it can get complicated to read.
//!
//! Lastly, we should note that we can have nested invocations interleaved with
//! normal substitution groups. For example, say we want to implement
//! `IsNegative` for `i8`, but don't want the same for `i16` and `i32`. We could
//! do the following:
//!
//! ```
//! # trait IsNegative { fn is_negative(&self) -> bool;}
//! # use duplicate::duplicate_item;
//! #[duplicate_item(
//!   int_type implementation;
//!   duplicate!{
//!     [                                     // -+
//!       int_type_nested; [u8]; [u16]; [u32] //  | Nested invocation producing 3
//!     ]                                     //  | substitution groups
//!     [int_type_nested ] [ false ];         //  |
//!   }                                       // -+
//!   [ i8 ] [ *self < 0 ]                    // -- Substitution group 4
//! )]
//! impl IsNegative for int_type {
//!   fn is_negative(&self) -> bool {
//!     implementation
//!   }
//! }
//!
//! # assert!(!42u8.is_negative());
//! # assert!(!42u16.is_negative());
//! # assert!(!42u32.is_negative());
//! # assert!(!42i8.is_negative());
//! ```
//!
//! In general, nested invocations can be used anywhere. However, note that
//! nested invocations are only recognized by the identifier `duplicate`,
//! followed by `!`, followed by a delimiter within which the nested invocation
//! is. Therefore, care must be taken to ensure the surrounding code is correct
//! after the expansion. E.g. maybe `;` is needed after the invocation, or
//! commas must be produced by the nested invocation itself as part of a list.
//!
//! ## Verbose Syntax
//!
//! The syntax used in the previous examples is the _short syntax_.
//! `duplicate_item` also accepts a _verbose syntax_ that is less concise, but
//! more readable in some circumstances. Using the verbose syntax, the very
//! first example above looks like this:
//!
//! ```
//! # trait IsMax {fn is_max(&self) -> bool;}
//! use duplicate::duplicate_item;
//! #[duplicate_item(
//!   [
//!     int_type  [ u8 ]
//!     max_value [ 255 ]
//!   ]
//!   [
//!     int_type  [ u16 ]
//!     max_value [ 65_535 ]
//!   ]
//!   [
//!     int_type  [ u32 ]
//!     max_value [ 4_294_967_295 ]
//!   ]
//! )]
//! impl IsMax for int_type {
//!   fn is_max(&self) -> bool {
//!     *self == max_value
//!   }
//! }
//!
//! # assert!(!42u8.is_max());
//! # assert!(!42u16.is_max());
//! # assert!(!42u32.is_max());
//! ```
//!
//! In the verbose syntax, a substitution group is put inside '[]' and
//! includes a list of substitution identifiers followed by their substitutions.
//! No `;`s are needed. Here is an annotated version of the same code:
//!
//! ```
//! # trait IsMax {fn is_max(&self) -> bool;}
//! # use duplicate::duplicate_item;
//! #[duplicate_item(
//!   [                               //-+
//!     int_type  [ u8 ]              // | Substitution group 1
//!     max_value [ 255 ]             // |
//! //  ^^^^^^^^^ ^^^^^^^ substitution   |
//! //  |                                |
//! //  substitution identifier          |
//!   ]                               //-+
//!   [                               //-+
//!     int_type  [ u16 ]             // | Substitution group 2
//!     max_value [ 65_535 ]          // |
//!   ]                               //-+
//!   [                               //-+
//!     max_value [ 4_294_967_295 ]   // | Substitution group 3
//!     int_type  [ u32 ]             // |
//!   ]                               //-+
//! )]
//! # impl IsMax for int_type {
//! #  fn is_max(&self) -> bool {
//! #     *self == max_value
//! #    }
//! #  }
//! #
//! # assert!(!42u8.is_max());
//! # assert!(!42u16.is_max());
//! # assert!(!42u32.is_max());
//! ```
//! Note that in each substitution group every identifier must have exactly one
//! substitution. All the groups must have the exact same identifiers, though
//! the order in which they arrive in each group is not important. For example,
//! in the annotated example, the third group has the `max_value` identifier
//! before `int_type` without having any effect on the expanded code.
//!
//! The verbose syntax is not very concise but it has some advantages over
//! the short syntax in regards to readability. Using many identifiers and
//! long substitutions can quickly become unwieldy in the short syntax.
//! The verbose syntax deals better with both cases as it will grow horizontally
//! instead of vertically.
//!
//! The verbose syntax also offers nested invocation. The syntax is exactly the
//! same, but since there is no initial substitution identifier list, nested
//! calls can be used anywhere (though still not inside substitution groups.)
//! The previous `IsNegative` nested invocation example can be written as
//! follows:
//!
//! ```
//! # trait IsNegative { fn is_negative(&self) -> bool;}
//! # use duplicate::duplicate_item;
//! #[duplicate_item(
//!   duplicate!{
//!     [ int_type_nested; [u8]; [u16]; [u32] ]
//!     [
//!       int_type [ int_type_nested ]
//!       implementation [ false ]
//!     ]
//!   }
//!   duplicate!{
//!     [ int_type_nested; [i8]; [i16]; [i32] ]
//!     [
//!       int_type [ int_type_nested ]
//!       implementation [ *self < 0 ]
//!     ]
//!   }
//! )]
//! impl IsNegative for int_type {
//!   fn is_negative(&self) -> bool {
//!     implementation
//!   }
//! }
//!
//! assert!(!42u8.is_negative());
//! assert!(!42u16.is_negative());
//! assert!(!42u32.is_negative());
//! assert!(!42i8.is_negative());
//! assert!(!42i16.is_negative());
//! assert!(!42i32.is_negative());
//! ```
//!
//! It's important to notice that the nested invocation doesn't know it
//! isn't the outer-most invocation and therefore doesn't discriminate between
//! identifiers. We had to use a different identifier in the nested invocations
//! (`int_type_nested`) than in the code (`int_type`), because otherwise the
//! nested invocation would substitute the substitution identifier too, instead
//! of only substituting in the nested invocation's substitute.
//!
//! Nested invocations must produce the syntax of their
//! parent invocation. However, each invocation's private syntax is free
//! to use any syntax type. Notice in our above example, the nested
//! invocations use short syntax but produce verbose syntax for the outer-most
//! invocation.
//!
//! ## Global Substitutions
//!
//! Say we have a function that takes two types as inputs and returns the same
//! types as output:
//!
//! ```
//! # struct Some<T1,T2>(T1,T2);
//! # struct Complex<T>(T);
//! # struct Type<T>(T);
//! # struct WeDont<T1,T2,T3>(T1,T2,T3);
//! # struct Want();
//! # struct To();
//! # struct Repeat();
//! # struct Other();
//! fn some_func(
//!   arg1: Some<Complex<()>, Type<WeDont<Want, To, Repeat>>>,
//!   arg2: Some<Other, Complex<Type<(To, Repeat)>>>)
//!   -> (
//!     Some<Complex<()>, Type<WeDont<Want, To, Repeat>>>,
//!     Some<Other, Complex<Type<(To, Repeat)>>>
//!   )
//! {
//!  # /*
//!   ...
//!  # */
//!  # unimplemented!()
//! }
//! ```
//!
//! Using global substitution, we can avoid repeating the types:
//!
//! ```
//! # struct Some<T1,T2>(T1,T2);
//! # struct Complex<T>(T);
//! # struct Type<T>(T);
//! # struct WeDont<T1,T2,T3>(T1,T2,T3);
//! # struct Want();
//! # struct To();
//! # struct Repeat();
//! # struct Other();
//! # use duplicate::duplicate_item;
//! #[duplicate_item(
//!   typ1 [Some<Complex<()>, Type<WeDont<Want, To, Repeat>>>];
//!   typ2 [Some<Other, Complex<Type<(To, Repeat)>>>];
//! )]
//! fn some_func(arg1: typ1, arg2: typ2) -> (typ1, typ2){
//!  # /*
//!   ...
//!  # */
//!  # unimplemented!()
//! }
//! ```
//!
//! Here we have defined the two global substitution variables `typ1` and
//! `typ2`, and used them in the function definition. Global substitutions have
//! the same syntax as verbose syntax substitution (identifier, optionally
//! followed by parameters, followed by a substitution.) In our example, no
//! short or verbose syntax substitution groups are given. While this is not
//! usually allowed, since we have given at least one global substitution, the
//! item will simply be kept as is, except with the global substitutions.
//!
//! We can follow global substitutions by substitution groups to achieve
//! duplication too:
//!
//! ```
//! # struct Some<T1,T2>(T1,T2);
//! # struct Complex<T>(T);
//! # struct Type<T>(T);
//! # struct WeDont<T1,T2,T3>(T1,T2,T3);
//! # struct Want();
//! # struct To();
//! # struct Repeat();
//! # struct Other();
//! # use duplicate::duplicate_item;
//! #[duplicate_item(
//!   typ1 [Some<Complex<()>, Type<WeDont<Want, To, Repeat>>>];
//!   typ2 [Some<Other, Complex<Type<(To, Repeat)>>>];
//!   method     reference(type);
//!   [get]      [& type];
//!   [get_mut]  [&mut type];
//! )]
//! pub fn method(
//!   arg0: reference([Type<()>]),
//!   arg1: typ1,
//!   arg2: typ2)
//!   -> (reference([typ1]), reference([typ2]))
//! {
//!  # /*
//!   ...
//!  # */
//!  # unimplemented!()
//! }
//! ```
//!
//! Here we duplicate the function to use either shared or mutable reference,
//! while reusing `typ1` and `typ2` in both duplicates.
//!
//! The following additional rules apply when using global substitutions:
//!
//! * All global substitutions must come before any short or verbose syntax
//!   substitution groups.
//! * Global substitution variable are __not__ substituted inside the bodies of
//!   following substitutions. If that is needed, multiple invocations can be
//!   used.
//! * All global substitutions must be separated by `;`, also when followed by
//!   substitution groups.
//!
//! # Crate Features
//!
//! ### `module_disambiguation`
//! __Implicit Module Name Disambiguation__ (Enabled by default)
//!
//! It is sometime beneficial to apply `duplicate_item` to a module, such that
//! all its contents are duplicated at once. However, this will always need the
//! resulting modules to have unique names to avoid the compiler issueing an
//! error. Without `module_disambiguation`, module names must be substituted
//! manually. With `module_disambiguation`, the following will compile
//! successfully:
//!
//! ```
//! # #[cfg(feature="module_disambiguation")] // Ensure test is only run if feature is on
//! # {
//! # use duplicate::duplicate_item;
//! #[duplicate_item(
//!   int_type  max_value;
//!   [ u8 ]    [ 255 ];
//!   [ u16 ]   [ 65_535 ];
//!   [ u32 ]   [ 4_294_967_295 ];
//! )]
//! mod module {
//! # // There is a bug with rustdoc, where these traits cannot
//! # // be imported using 'use super::*'.
//! # // This is a workaround
//! # pub trait IsNegative { fn is_negative(&self) -> bool;}
//! # pub trait IsMax {fn is_max(&self) -> bool;}
//!   impl IsMax for int_type {
//!     fn is_max(&self) -> bool {
//!       *self == max_value
//!     }
//!   }
//!   impl IsNegative for int_type {
//!     fn is_negative(&self) -> bool {
//!       false
//!     }
//!   }
//! }
//! # // This is part of the workaround for not being able to import
//! # // these traits in each module. We rename them so that they
//! # // don't clash with each other.
//! # use module_u8::IsNegative as trait1;
//! # use module_u8::IsMax as trait2;
//! # use module_u16::IsNegative as trait3;
//! # use module_u16::IsMax as trait4;
//! # use module_u32::IsNegative as trait5;
//! # use module_u32::IsMax as trait6;
//!
//! assert!(!42u8.is_max());
//! assert!(!42u16.is_max());
//! assert!(!42u32.is_max());
//! assert!(!42u8.is_negative());
//! assert!(!42u16.is_negative());
//! assert!(!42u32.is_negative());
//! # }
//! ```
//!
//! This works because the three duplicate modules get assigned unique names:
//! `module_u8`, `module_u16`, and `module_u32`. However, this only works if a
//! substitution identifier can be found, where all its substitutions only
//! produce a single identifier and nothing else. Those identifiers are then
//! converted to snake case, and postfixed to the original module's name,
//! e.g., `module  + u8 = module_u8`. The first suitable substitution
//! identifier is chosen.
//!
//! Notes:
//!
//! * The exact way unique names are generated is not part of any stability
//!   guarantee and should not be depended upon. It may change in the future
//!   without bumping the major version.
//! * Only the name of the module is substituted with the disambiguated name.
//!   Any matching identifier in the body of the module is ignored.
//!
//! ### `pretty_errors`
//! __More Detailed Error Messages__ (Enabled by default)
//!
//! Enabling this feature will make error messages indicate exactly where the
//! offending code is. Without this feature, error messages will not provide
//! detailed location indicators for errors.
//!
//! This feature is has no effect on expansion. Therefore, libraries are advised
//! to keep this feature off (note that it's enabled by default)
//! to avoid forcing it on users.
//!
//! # Disclaimer
//!
//! This crate does not try to justify or condone the usage of code duplication
//! instead of proper abstractions.
//! This crate should only be used where it is not possible to reduce code
//! duplication through other means, or where it simply is not worth it.
//!
//! As an example, libraries that have two or more structs/traits with similar
//! APIs might use this macro to test them without having to copy-paste test
//! cases and manually make the needed edits.
#![cfg_attr(feature = "fail-on-warnings", deny(warnings))]

extern crate proc_macro;

mod crate_readme_test;
#[cfg(feature = "module_disambiguation")]
mod module_disambiguation;
mod parse;
mod substitute;
mod token_iter;

use crate::token_iter::{Token, TokenIter};
use parse::*;
use proc_macro::{Delimiter, Group, Ident, Span, TokenStream};
#[cfg(feature = "pretty_errors")]
use proc_macro_error::{abort, proc_macro_error};
use std::collections::HashMap;
use substitute::*;

/// Duplicates the item and substitutes specific identifiers for different code
/// snippets in each duplicate.
///
/// # Short Syntax
/// ```
/// use duplicate::duplicate_item;
/// trait IsMax {
///   fn is_max(&self) -> bool;
/// }
///
/// #[duplicate_item(
///   int_type  max_value;
///   [ u8 ]    [ 255 ];
///   [ u16 ]   [ 65_535 ];
///   [ u32 ]   [ 4_294_967_295 ];
/// )]
/// impl IsMax for int_type {
///   fn is_max(&self) -> bool {
///     *self == max_value
///   }
/// }
///
/// assert!(!42u8.is_max());
/// assert!(!42u16.is_max());
/// assert!(!42u32.is_max());
/// ```
/// The implementation of `IsMax` is duplicated 3 times:
///
/// 1. For the type `u8` and the its maximum value `255`.
/// 2. For the type `u16` and the its maximum value `65_535 `.
/// 3. For the type `u32` and the its maximum value `4_294_967_295 `.
///
/// This syntax must start with a list of all identifiers followed by `;`.
/// Then a `;` seperated list of substitution groups must be given (at least 1
/// group). Every group is a list of substitutions, one for each substitution
/// identifier given in the first line.
/// The substitutions must be enclosed in `[]` but are otherwise
/// free.
///
/// # Verbose Syntax
///
/// ```
/// use duplicate::duplicate_item;
/// trait IsMax {
///   fn is_max(&self) -> bool;
/// }
///
/// #[duplicate_item(
///   [
///     int_type  [ u8 ]
///     max_value [ 255 ]
///   ]
///   [
///     int_type  [ u16 ]
///     max_value [ 65_535 ]
///   ]
///   [
///     max_value [ 4_294_967_295 ]
///     int_type  [ u32 ]
///   ]
/// )]
/// impl IsMax for int_type {
///   fn is_max(&self) -> bool {
///     *self == max_value
///   }
/// }
///
/// assert!(!42u8.is_max());
/// assert!(!42u16.is_max());
/// assert!(!42u32.is_max());
/// ```
/// Has the same functionality as the previous short-syntax example.
///
/// For each duplicate needed, a _substitution group_ must be given enclosed in
/// `[]`. A substitution group is a set of identifiers and
/// substitution pairs, like in the short syntax, but there can only be one
/// substitution per identifier. All substitution groups must have the same
/// identifiers, however their order is unimportant, as can be seen from the
/// last substitution group above, where `max_value` comes before `int_type`.
///
/// # Parameterized Substitutoin
///
/// ```
/// use duplicate::duplicate_item;
/// struct VecWrap<T>(Vec<T>);
///
/// impl<T> VecWrap<T> {
///   #[duplicate_item(
///     method     reference(lifetime, type);
///     [get]      [& 'lifetime type];
///     [get_mut]  [& 'lifetime mut type];
///   )]
///   pub fn method<'a>(self: reference([a],[Self]),idx: usize) -> Option<reference([a],[T])> {
///     self.0.method(idx)
///   }
/// }
///
/// let mut vec = VecWrap(vec![1,2,3]);
/// assert_eq!(*vec.get(0).unwrap(), 1);
/// *vec.get_mut(1).unwrap() = 5;
/// assert_eq!(*vec.get(1).unwrap(), 5);
/// ```
///
/// This implements two versions of the method:
///
/// - `get`: Borrows `self` immutably and return a shared reference.
/// - `get_mut`: Borrows `self` mutably and returns a mutable reference.
///
/// If an identifier is followed by parenthises (in both its declaration and its
/// use), a set of parameters can be provided to customize the subtituion for
/// each use. In the declaration a list of identifiers is given, which can be
/// used in its substitutions. When using the identifier, argument code snippets
/// must be given in a comma separated list, with each argument being inclosed
/// in `[]`.
///
/// Parameterized substitution is also available for the verbose syntax:
///
/// ```
/// # use duplicate::duplicate_item;
/// # struct VecWrap<T>(Vec<T>);
/// impl<T> VecWrap<T> {
///   #[duplicate_item(
///     [
///       method                     [get]
///       reference(lifetime, type)  [& 'lifetime type]
///     ]
///     [
///       method                     [get_mut]
///       reference(lifetime, type)  [& 'lifetime mut type]
///     ]
///   )]
///   pub fn method<'a>(self: reference([a],[Self]),idx: usize) -> Option<reference([a],[T])> {
///     self.0.method(idx)
///   }
/// }
/// # let mut vec = VecWrap(vec![1,2,3]);
/// # assert_eq!(*vec.get(0).unwrap(), 1);
/// # *vec.get_mut(1).unwrap() = 5;
/// # assert_eq!(*vec.get(1).unwrap(), 5);
/// ```
///
/// # Nested Invocation
/// ```
/// use duplicate::duplicate_item;
/// trait IsNegative {
///   fn is_negative(&self) -> bool;
/// }
///
/// #[duplicate_item(
///   int_type implementation;
///   duplicate!{
///     [                                  // -+
///       int_type_nested;[u8];[u16];[u32] //  | Nested invocation producing 3
///     ]                                  //  | substitution groups
///     [ int_type_nested ] [ false ];     //  |
///   }                                    // -+
///   [ i8 ] [ *self < 0 ]                 // -- Substitution group 4
/// )]
/// impl IsNegative for int_type {
///   fn is_negative(&self) -> bool {
///     implementation
///   }
/// }
///
/// assert!(!42u8.is_negative());
/// assert!(!42u16.is_negative());
/// assert!(!42u32.is_negative());
/// assert!(!42i8.is_negative());
/// ```
///
/// This implements `IsNegative` 4 times:
///
/// 1. For the type `u8` with the implementation of the method simply returning
/// `false`. 1. For the type `u16` the same way as `u8`.
/// 1. For the type `u32` the same way as `u8` and `u16`.
/// 1. For `i8` with the implementation of the method checking whether it's less
/// than `0`.
///
/// We used `#` to start a _nested invocation_ of the macro. In it, we use the
/// identifier `int_type_nested` to substitute the 3 unsigned integer types into
/// the body of the nested invocation, which is a substitution group for the
/// outer macro invocation. This therefore produces the three substitution
/// groups that makes the outer macro make the duplicates for the unsigned
/// integers.
///
/// This code is identical to the following, which doesn't use nested
/// invocation:
///
/// ```
/// # use duplicate::duplicate_item;
/// # trait IsNegative {
/// #   fn is_negative(&self) -> bool;
/// # }
/// #[duplicate_item(
///   int_type implementation;
///   [ u8 ]  [ false ];
///   [ u16 ] [ false ];
///   [ u32 ] [ false ];
///   [ i8 ]  [ *self < 0 ]
/// )]
/// impl IsNegative for int_type {
///   fn is_negative(&self) -> bool {
///     implementation
///   }
/// }
/// # assert!(!42u8.is_negative());
/// # assert!(!42u16.is_negative());
/// # assert!(!42u32.is_negative());
/// # assert!(!42i8.is_negative());
/// ```
///
/// Nested invocation is also available for the verbose syntax:
///
/// ```
/// use duplicate::duplicate_item;
/// trait IsNegative {
///   fn is_negative(&self) -> bool;
/// }
///
/// #[duplicate_item(
///   duplicate!{                            // -+
///     [ int_type_nested;[u8];[u16];[u32] ] //  |
///     [                                    //  | Nested invocation producing 3
///       int_type [ int_type_nested ]       //  | substitution groups
///       implementation [ false ]           //  |
///     ]                                    //  |
///   }                                      // -+
///   [                                      // -+
///     int_type [ i8 ]                      //  | Substitution group 4
///     implementation [ *self < 0 ]         //  |
///   ]                                      // -+
/// )]
/// impl IsNegative for int_type {
///   fn is_negative(&self) -> bool {
///     implementation
///   }
/// }
///
/// assert!(!42u8.is_negative());
/// assert!(!42u16.is_negative());
/// assert!(!42u32.is_negative());
/// assert!(!42i8.is_negative());
/// ```
///
/// ## Global Substitution
///
/// ```
/// # struct Some<T1,T2>(T1,T2);
/// # struct Complex<T>(T);
/// # struct Type<T>(T);
/// # struct WeDont<T1,T2,T3>(T1,T2,T3);
/// # struct Want();
/// # struct To();
/// # struct Repeat();
/// # struct Other();
/// # use duplicate::duplicate_item;
/// #[duplicate_item(
///   typ1 [Some<Complex<()>, Type<WeDont<Want, To, Repeat>>>];
///   typ2 [Some<Other, Complex<Type<(To, Repeat)>>>];
///   method     reference(type);
///   [get]      [& type];
///   [get_mut]  [&mut type];
/// )]
/// pub fn method(
///   arg0: reference([Type<()>]),
///   arg1: typ1,
///   arg2: typ2)
///   -> (reference([typ1]), reference([typ2]))
/// {
///  # /*
///   ...
///  # */
///  # unimplemented!()
/// }
/// ```
///
/// The global substitutions (`typ1` and `typ2`) are substituted in both
/// duplicates of the function. Global substitutions have the same syntax as
/// verbose syntax substitutions, are `;` separated (even from following
/// susbtitutions groups), must all be defined at the beginning, and aren't
/// usable in the invocation itself but only in the code being duplicated.
#[proc_macro_attribute]
#[cfg_attr(feature = "pretty_errors", proc_macro_error)]
pub fn duplicate_item(attr: TokenStream, item: TokenStream) -> TokenStream
{
	match duplicate_impl(attr, item)
	{
		Ok(result) => result,
		Err(err) => abort(err.0, &err.1),
	}
}

/// Duplicates the given code and substitutes specific identifiers
/// for different code snippets in each duplicate.
///
/// This is a function-like procedural macro version of [`duplicate_item`].
/// It's functionality is the exact same, and they share the same invocation
/// syntax(es). The only difference is that `duplicate` doesn't only
/// duplicate the following item, but duplicate all code given to it after the
/// invocation block.
///
/// ## Usage
///
/// A call to `duplicate` must start with a `[]` containing the
/// duplication invocation. Everything after that will then be duplicated
/// according to the invocation.
///
/// Given the following `duplicate` call:
/// ```
/// use duplicate::duplicate;
/// # trait IsMax {
/// #   fn is_max(&self) -> bool;
/// # }
///
/// duplicate!{
///   [
///     // Some duplication invocation
/// #     int_type  max_value;
/// #     [ u8 ]    [ 255 ];
/// #     [ u16 ]   [ 65_535 ];
/// #     [ u32 ]   [ 4_294_967_295 ];
///   ]
///   // Some code to duplicate
/// #   impl IsMax for int_type {
/// #     fn is_max(&self) -> bool {
/// #       *self == max_value
/// #     }
/// #   }
/// }
/// # // We use an explicit 'main' function to ensure the previous
/// # // 'duplicate' call doesn't get treated as a statement,
/// # // which illegal before rust 1.45.
/// # fn main() {
/// #   assert!(!42u8.is_max());
/// #   assert!(!42u16.is_max());
/// #   assert!(!42u32.is_max());
/// # }
/// ```
/// It is equivalent to the following invocation using [`duplicate_item`]:
/// ```
/// use duplicate::duplicate_item;
/// # trait IsMax {
/// #   fn is_max(&self) -> bool;
/// # }
///
/// #[duplicate_item(
///   // Some duplication invocation
/// #   int_type  max_value;
/// #   [ u8 ]    [ 255 ];
/// #   [ u16 ]   [ 65_535 ];
/// #   [ u32 ]   [ 4_294_967_295 ];
/// )]
/// // Some code to duplicate
/// # impl IsMax for int_type {
/// #   fn is_max(&self) -> bool {
/// #     *self == max_value
/// #   }
/// # }
/// # assert!(!42u8.is_max());
/// # assert!(!42u16.is_max());
/// # assert!(!42u32.is_max());
/// ```
///
/// For more details on about invocations and features see [`duplicate_item`].
///
/// [`duplicate_item`]: attr.duplicate_item.html
#[proc_macro]
#[cfg_attr(feature = "pretty_errors", proc_macro_error)]
pub fn duplicate(stream: TokenStream) -> TokenStream
{
	let mut iter: TokenIter = stream.into();

	let result = match iter.next_group(
		Some(Delimiter::Bracket),
		"Expected invocation within brackets: [...]",
	)
	{
		Ok((invocation, _)) =>
		{
			let invocation_body = invocation.to_token_stream();

			duplicate_impl(invocation_body, iter.to_token_stream())
		},
		Err(err) => Err(err),
	};

	match result
	{
		Ok(result) => result,
		Err(err) => abort(err.0, &err.1),
	}
}

/// A result that specified where in the token stream the error occured
/// and is accompanied by a message.
type Result<T> = std::result::Result<T, (Span, String)>;

/// Implements the macro.
fn duplicate_impl(attr: TokenStream, item: TokenStream) -> Result<TokenStream>
{
	let dup_def = parse_invocation(attr)?;

	duplicate_and_substitute(
		item,
		&dup_def.global_substitutions,
		dup_def.duplications.iter(),
	)
}

/// Terminates with an error and produces the given message.
///
/// The `pretty_errors` feature can be enabled, the span is shown
/// with the error message.
#[allow(unused_variables)]
fn abort(span: Span, msg: &str) -> !
{
	#[cfg(feature = "pretty_errors")]
	{
		abort!(span, msg);
	}
	#[cfg(not(feature = "pretty_errors"))]
	{
		panic!("{}", msg);
	}
}

#[derive(Debug)]
struct SubstitutionGroup
{
	substitutions: HashMap<String, Substitution>,
	#[cfg(feature = "module_disambiguation")]
	identifier_order: Vec<String>,
}

impl SubstitutionGroup
{
	fn new() -> Self
	{
		Self {
			substitutions: HashMap::new(),
			#[cfg(feature = "module_disambiguation")]
			identifier_order: Vec::new(),
		}
	}

	fn add_substitution(&mut self, ident: Ident, subst: Substitution) -> Result<()>
	{
		if self
			.substitutions
			.insert(ident.to_string(), subst)
			.is_some()
		{
			Err((
				ident.span(),
				"Substitution identifier assigned mutiple substitutions".into(),
			))
		}
		else
		{
			#[cfg(feature = "module_disambiguation")]
			{
				self.identifier_order.push(ident.to_string());
			}
			Ok(())
		}
	}

	fn substitution_of(&self, ident: &String) -> Option<&Substitution>
	{
		self.substitutions.get(ident)
	}

	fn identifiers(&self) -> impl Iterator<Item = &String>
	{
		self.substitutions.keys()
	}

	fn identifiers_with_args(&self) -> impl Iterator<Item = (&String, usize)>
	{
		self.identifiers()
			.map(move |ident| (ident, self.substitution_of(ident).unwrap().argument_count()))
	}

	#[cfg(feature = "module_disambiguation")]
	fn identifiers_ordered(&self) -> impl Iterator<Item = &String>
	{
		self.identifier_order.iter()
	}
}

/// Defines how duplication should happen.
struct DuplicationDefinition
{
	pub global_substitutions: SubstitutionGroup,
	pub duplications: Vec<SubstitutionGroup>,
}

/// Checks whether item is a module and whether it then needs disambiguation.
///
/// Returns the identifier of the found module (if found) and the substitution
/// identifier that should be used to disambiguate it in each duplicate.
/// Returns none if no disambiguation is needed.
pub(crate) fn disambiguate_module<'a>(
	item: &TokenStream,
	sub_groups: impl Iterator<Item = &'a SubstitutionGroup> + Clone,
) -> Result<Option<(Ident, String)>>
{
	let mut sub_groups = sub_groups.peekable();

	match (sub_groups.peek(), get_module_name(&item))
	{
		(Some(sub), Some(ref module)) if sub.substitution_of(&module.to_string()).is_none() =>
		{
			#[cfg(not(feature = "module_disambiguation"))]
			{
				Err((
					module.span(),
					format!(
						"Duplicating the module '{}' without giving each duplicate a unique \
						 name.\nHint: Enable the 'duplicate' crate's 'module_disambiguation' \
						 feature to automatically generate unique module names.",
						module.to_string()
					),
				))
			}
			#[cfg(feature = "module_disambiguation")]
			{
				let span = module.span();
				Ok(Some((
					module.clone(),
					crate::module_disambiguation::find_simple(sub_groups, span)?,
				)))
			}
		},
		_ => Ok(None),
	}
}

/// Extract the name of the module assuming the given item is a module
/// declaration.
///
/// If not, returns None.
fn get_module_name(item: &TokenStream) -> Option<Ident>
{
	let mut iter: TokenIter = item.clone().into();

	iter.expect_simple(|t| Token::is_ident(t, Some("mod")), None)
		.ok()?;

	let module = iter.extract_identifier(None).ok()?;
	iter.next_group(Some(Delimiter::Brace), "").ok()?;
	Some(module)
}

/// Creates a new group with the given span correctly set as the group's span.
///
/// Use this function instead of creating the group manually, as forgetting
/// to set the span after creating the group could cause problems like leaking
/// this crate's edition into user code or simply result in cryptic error
/// messages.
pub(crate) fn new_group(del: Delimiter, stream: TokenStream, span: Span) -> Group
{
	// We rename 'Group' to not get caught by the 'ensure_no_group_new' test
	use Group as Gr;
	let mut g = Gr::new(del, stream);
	g.set_span(span);
	g
}