1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
//! This crate provides macros for easy code duplication with substitution:
//!
//! - [`duplicate_item`]: Attribute macro.
//! - [`duplicate`]: Function-like procedural macro.
//!
//! The only major difference between the two is where you can use them.
//! Therefore, the following section presents how to use
//! [`duplicate_item`] only. Refer to [`duplicate`]'s documentation for how it
//! defers from what is specified below.
//!
//! [`duplicate_item`]: attr.duplicate_item.html
//! [`duplicate`]: macro.duplicate.html
//! # Usage
//!
//! Say you have a trait with a method `is_max` that should return `true` if the
//! value of the object is the maximum allowed and `false` otherwise:
//! ```
//! trait IsMax {
//!   fn is_max(&self) -> bool;
//! }
//! ```
//! You would like to implement this trait for the three integer types `u8`,
//! `u16`, and `u32`:
//!
//! ```
//! # trait IsMax {fn is_max(&self) -> bool;}
//! impl IsMax for u8 {
//!   fn is_max(&self) -> bool {
//!     *self == 255
//!   }
//! }
//! impl IsMax for u16 {
//!   fn is_max(&self) -> bool {
//!     *self == 65_535
//!   }
//! }
//! impl IsMax for u32 {
//!   fn is_max(&self) -> bool {
//!     *self == 4_294_967_295
//!   }
//! }
//! ```
//! This is a lot of repetition. Only the type and the maximum value are
//! actually different between the three implementations. This might not be much
//! in our case, but imagine doing this for all the integer types (10, as of the
//! last count.) We can use the `duplicate_item` attribute to avoid repeating
//! ourselves:
//!
//! ```
//! # trait IsMax {fn is_max(&self) -> bool;}
//! use duplicate::duplicate_item;
//! #[duplicate_item(
//!   int_type  max_value;
//!   [ u8 ]    [ 255 ];
//!   [ u16 ]   [ 65_535 ];
//!   [ u32 ]   [ 4_294_967_295 ];
//! )]
//! impl IsMax for int_type {
//!   fn is_max(&self) -> bool {
//!     *self == max_value
//!   }
//! }
//!
//! assert!(!42u8.is_max());
//! assert!(!42u16.is_max());
//! assert!(!42u32.is_max());
//! ```
//! The above code will expand to the three implementations before it.
//! The attribute invocation specifies that the following item should be
//! substituted by three duplicates of itself. Additionally, each occurrence of
//! the identifier `int_type` in the first duplicate should be replaced by `u8`,
//! in the second duplicate by `u16`, and in the last by `u32`. Likewise, each
//! occurrence of `max_value` should be replaced by `255`, `65_535`, and
//! `4_294_967_295` in the first, second, and third duplicates respectively.
//!
//! `int_type` and `max_value` are called _substitution identifiers_, while `[
//! u8 ]`, `[ u16 ]`, and `[ u32 ]` are each _substitutions_ for `int_type` and
//! `[255]`, `[65_535]`, and `[4_294_967_295]` are substitutions for
//! `max_value`. Each pair of substitutions for the identifiers is called a
//! _substitution group_. Substitution groups must be seperated by `;` and the
//! number of duplicates made is equal to the number of subsitution groups.
//!
//! Substitution identifiers must be valid Rust identifiers.
//! The code inside substitutions can be arbitrary, as long as the expanded code
//! is valid.
//!
//! ## Parameterized Substitution
//!
//! Say we have a struct that wraps a vector and we want to give
//! access to the vector's `get` and `get_mut` methods directly:
//!
//! ```
//! struct VecWrap<T>(Vec<T>);
//!
//! impl<T> VecWrap<T> {
//!   pub fn get(&self, idx: usize) -> Option<&T> {
//!     self.0.get(idx)
//!   }
//!   pub fn get_mut(&mut self, idx: usize) -> Option<&mut T> {
//!     self.0.get_mut(idx)
//!   }
//! }
//!
//! let mut vec = VecWrap(vec![1,2,3]);
//! assert_eq!(*vec.get(0).unwrap(), 1);
//! *vec.get_mut(1).unwrap() = 5;
//! assert_eq!(*vec.get(1).unwrap(), 5);
//! ```
//!
//! Even though the implementations of the two versions of `get` are almost
//! identical, we will always need to duplicate the code, because Rust cannot be
//! generic over mutability. _Parameterized substitution_ allows us to pass code
//! snippets to substitution identifiers to customize the substitution for that
//! specific use of the identifier. We can use it to help with the
//! implementation of constant and mutable versions of methods and functions.
//! The following `impl` is identical to the above code:
//!
//! ```
//! # use duplicate::duplicate_item;
//! # struct VecWrap<T>(Vec<T>);
//! impl<T> VecWrap<T> {
//!   #[duplicate_item(
//!     method     reference(type);
//!     [get]      [& type];
//!     [get_mut]  [&mut type];
//!   )]
//!   pub fn method(self: reference([Self]), idx: usize) -> Option<reference([T])> {
//!     self.0.method(idx)
//!   }
//! }
//! # let mut vec = VecWrap(vec![1,2,3]);
//! # assert_eq!(*vec.get(0).unwrap(), 1);
//! # *vec.get_mut(1).unwrap() = 5;
//! # assert_eq!(*vec.get(1).unwrap(), 5);
//! ```
//!
//! In a `duplicate_item` invocation, if a substitution identifier is followed
//! by parenthises containing a list of parameters, they can be used in the
//! substitution. In this example, the `reference` identifier takes 1 parameter
//! named `type`, which is used in the substitutions to create either a shared
//! reference to the type or a mutable one. When using the `reference` in the
//! method declaration, we give it different types as arguments to construct
//! either shared or mutable references.
//! E.g. `reference([Self])` becomes `&Self` in the first duplicate and `&mut
//! Self` in the second. An argument can be any code snippet inside `[]`.
//!
//! A substitution identifier can take any number of parameters.
//! We can use this if we need to also provide the references with a lifetime:
//!
//! ```
//! # use duplicate::duplicate_item;
//! # struct VecWrap<T>(Vec<T>);
//! impl<T> VecWrap<T> {
//!   #[duplicate_item(
//!     method     reference(lifetime, type);
//!     [get]      [& 'lifetime type];
//!     [get_mut]  [& 'lifetime mut type];
//!   )]
//!   pub fn method<'a>(self: reference([a],[Self]),idx: usize) -> Option<reference([a],[T])> {
//!     self.0.method(idx)
//!   }
//! }
//! # let mut vec = VecWrap(vec![1,2,3]);
//! # assert_eq!(*vec.get(0).unwrap(), 1);
//! # *vec.get_mut(1).unwrap() = 5;
//! # assert_eq!(*vec.get(1).unwrap(), 5);
//! ```
//!
//! Here we pass the lifetime `'a` to the substitution as the first argument,
//! and the type as the second. Notice how the arguments are separated by a
//! comma. This results in the following code:
//!
//! ```
//! # struct VecWrap<T>(Vec<T>);
//! impl<T> VecWrap<T> {
//!   pub fn get<'a>(self: &'a Self, idx: usize) -> Option<&'a T> {
//!     self.0.get(idx)
//!   }
//!   pub fn get_mut<'a>(self: &'a mut Self, idx: usize) -> Option<&'a mut T> {
//!     self.0.get_mut(idx)
//!   }
//! }
//! # let mut vec = VecWrap(vec![1,2,3]);
//! # assert_eq!(*vec.get(0).unwrap(), 1);
//! # *vec.get_mut(1).unwrap() = 5;
//! # assert_eq!(*vec.get(1).unwrap(), 5);
//! ```
//!
//! Notice also the way we pass lifetimes to identifiers: `reference([a],
//! [Self])`. The lifetime is passed without the `'` prefix, which is instead
//! present in the substitution before the 	lifetime: `[& 'lifetime type]`.
//! This is because the rust syntax disallows lifetimes in brackets on their
//! own. Our solution is therefore a hacking of the system and not a property of
//! `duplicate_item` itself.
//!
//! ## Nested Invocation
//!
//! Imagine we have the following trait with the method `is_negative` that
//! should return `true` if the value of the object is negative and `false`
//! otherwise:
//! ```
//! trait IsNegative {
//!   fn is_negative(&self) -> bool;
//! }
//! ```
//! We want to implement this for the six integer types `u8`, `u16`, `u32`,
//! `i8`, `i16`, and `i32`. For the first three types, which are all unsigned,
//! the implementation of this trait should trivially return `false` as they
//! can't be negative. However, for the remaining, signed types their
//! implementations is identical (checking whether they are less than `0`), but,
//! of course, different from the first three:
//! ```
//! # trait IsNegative { fn is_negative(&self) -> bool;}
//! impl IsNegative for u8 {
//!   fn is_negative(&self) -> bool {
//!     false
//!   }
//! }
//! impl IsNegative for u16 {
//!   fn is_negative(&self) -> bool {
//!     false
//!   }
//! }
//! impl IsNegative for u32 {
//!   fn is_negative(&self) -> bool {
//!     false
//!   }
//! }
//! impl IsNegative for i8 {
//!   fn is_negative(&self) -> bool {
//!     *self < 0
//!   }
//! }
//! impl IsNegative for i16 {
//!   fn is_negative(&self) -> bool {
//!     *self < 0
//!   }
//! }
//! impl IsNegative for i32 {
//!   fn is_negative(&self) -> bool {
//!     *self <  0
//!   }
//! }
//! # assert!(!42u8.is_negative());
//! # assert!(!42u16.is_negative());
//! # assert!(!42u32.is_negative());
//! # assert!(!42i8.is_negative());
//! # assert!(!42i16.is_negative());
//! # assert!(!42i32.is_negative());
//! ```
//!
//! Notice how the code repetition is split over 2 axes: 1) They all implement
//! the same trait 2) the method implementations of the first 3 are identical to
//! each other but different to the next 3, which are also mutually identical.
//! To implement this using only the syntax we have already seen, we could do
//! something like this:
//!
//! ```
//! # trait IsNegative { fn is_negative(&self) -> bool;}
//! # use duplicate::duplicate_item;
//! #[duplicate_item(
//!   int_type implementation;
//!   [u8]     [false];
//!   [u16]    [false];
//!   [u32]    [false];
//!   [i8]     [*self < 0];
//!   [i16]    [*self < 0];
//!   [i32]    [*self < 0]
//! )]
//! impl IsNegative for int_type {
//!   fn is_negative(&self) -> bool {
//!     implementation
//!   }
//! }
//!
//! assert!(!42u8.is_negative());
//! assert!(!42u16.is_negative());
//! assert!(!42u32.is_negative());
//! assert!(!42i8.is_negative());
//! assert!(!42i16.is_negative());
//! assert!(!42i32.is_negative());
//! ```
//!
//! However, ironically, we here had to repeat ourselves in the macro invocation
//! instead of the code: we needed to repeat the implementations `[ false ]` and
//! `[ *self < 0 ]` three times each. We can utilize _nested invocation_ to
//! remove the last bit of repetition:
//!
//! ```
//! # trait IsNegative { fn is_negative(&self) -> bool;}
//! # use duplicate::duplicate_item;
//! #[duplicate_item(
//!   int_type implementation;
//!   duplicate!{
//!     [
//!       int_type_nested; [u8]; [u16]; [u32]
//!     ]
//!     [ int_type_nested ] [ false ];
//!   }
//!   duplicate!{
//!     [
//!       int_type_nested; [i8]; [i16]; [i32]
//!     ]
//!     [ int_type_nested ] [ *self < 0 ];
//!   }
//! )]
//! impl IsNegative for int_type {
//!   fn is_negative(&self) -> bool {
//!     implementation
//!   }
//! }
//!
//! assert!(!42u8.is_negative());
//! assert!(!42u16.is_negative());
//! assert!(!42u32.is_negative());
//! assert!(!42i8.is_negative());
//! assert!(!42i16.is_negative());
//! assert!(!42i32.is_negative());
//! ```
//!
//! We use `duplicate!{..}` to invoke the macro inside itself.
//! In our example, we have 2 invocations that each produce 3 substitution
//! groups, inserting the correct `implementation` for their signed or unsigned
//! types. The above nested invocation is equivalent to the previous, non-nested
//! invocation, and actually expands to it as an intermediate step before
//! expanding the outer-most invocation.
//!
//! Deeper levels of nested invocation are possible and work as expected.
//! There is no limit on the depth of nesting, however, as might be clear from
//! our example, it can get complicated to read.
//!
//! Lastly, we should note that we can have nested invocations interleaved with
//! normal substitution groups. For example, say we want to implement
//! `IsNegative` for `i8`, but don't want the same for `i16` and `i32`. We could
//! do the following:
//!
//! ```
//! # trait IsNegative { fn is_negative(&self) -> bool;}
//! # use duplicate::duplicate_item;
//! #[duplicate_item(
//!   int_type implementation;
//!   duplicate!{
//!     [                                     // -+
//!       int_type_nested; [u8]; [u16]; [u32] //  | Nested invocation producing 3
//!     ]                                     //  | substitution groups
//!     [int_type_nested ] [ false ];         //  |
//!   }                                       // -+
//!   [ i8 ] [ *self < 0 ]                    // -- Substitution group 4
//! )]
//! impl IsNegative for int_type {
//!   fn is_negative(&self) -> bool {
//!     implementation
//!   }
//! }
//!
//! # assert!(!42u8.is_negative());
//! # assert!(!42u16.is_negative());
//! # assert!(!42u32.is_negative());
//! # assert!(!42i8.is_negative());
//! ```
//!
//! In general, nested invocations can be used anywhere. However, note that
//! nested invocations are only recognized by the identifier `duplicate`,
//! followed by `!`, followed by a delimiter within which the nested invocation
//! is. Therefore, care must be taken to ensure the surrounding code is correct
//! after the expansion. E.g. maybe `;` is needed after the invocation, or
//! commas must be produced by the nested invocation itself as part of a list.
//!
//! ## Verbose Syntax
//!
//! The syntax used in the previous examples is the _short syntax_.
//! `duplicate_item` also accepts a _verbose syntax_ that is less concise, but
//! more readable in some circumstances. Using the verbose syntax, the very
//! first example above looks like this:
//!
//! ```
//! # trait IsMax {fn is_max(&self) -> bool;}
//! use duplicate::duplicate_item;
//! #[duplicate_item(
//!   [
//!     int_type  [ u8 ]
//!     max_value [ 255 ]
//!   ]
//!   [
//!     int_type  [ u16 ]
//!     max_value [ 65_535 ]
//!   ]
//!   [
//!     int_type  [ u32 ]
//!     max_value [ 4_294_967_295 ]
//!   ]
//! )]
//! impl IsMax for int_type {
//!   fn is_max(&self) -> bool {
//!     *self == max_value
//!   }
//! }
//!
//! # assert!(!42u8.is_max());
//! # assert!(!42u16.is_max());
//! # assert!(!42u32.is_max());
//! ```
//!
//! In the verbose syntax, a substitution group is put inside '[]' and
//! includes a list of substitution identifiers followed by their substitutions.
//! No `;`s are needed. Here is an annotated version of the same code:
//!
//! ```
//! # trait IsMax {fn is_max(&self) -> bool;}
//! # use duplicate::duplicate_item;
//! #[duplicate_item(
//!   [                               //-+
//!     int_type  [ u8 ]              // | Substitution group 1
//!     max_value [ 255 ]             // |
//! //  ^^^^^^^^^ ^^^^^^^ substitution   |
//! //  |                                |
//! //  substitution identifier          |
//!   ]                               //-+
//!   [                               //-+
//!     int_type  [ u16 ]             // | Substitution group 2
//!     max_value [ 65_535 ]          // |
//!   ]                               //-+
//!   [                               //-+
//!     max_value [ 4_294_967_295 ]   // | Substitution group 3
//!     int_type  [ u32 ]             // |
//!   ]                               //-+
//! )]
//! # impl IsMax for int_type {
//! #  fn is_max(&self) -> bool {
//! #     *self == max_value
//! #    }
//! #  }
//! #
//! # assert!(!42u8.is_max());
//! # assert!(!42u16.is_max());
//! # assert!(!42u32.is_max());
//! ```
//! Note that in each substitution group every identifier must have exactly one
//! substitution. All the groups must have the exact same identifiers, though
//! the order in which they arrive in each group is not important. For example,
//! in the annotated example, the third group has the `max_value` identifier
//! before `int_type` without having any effect on the expanded code.
//!
//! The verbose syntax is not very concise but it has some advantages over
//! the short syntax in regards to readability. Using many identifiers and
//! long substitutions can quickly become unwieldy in the short syntax.
//! The verbose syntax deals better with both cases as it will grow horizontally
//! instead of vertically.
//!
//! The verbose syntax also offers nested invocation. The syntax is exactly the
//! same, but since there is no initial substitution identifier list, nested
//! calls can be used anywhere (though still not inside substitution groups.)
//! The previous `IsNegative` nested invocation example can be written as
//! follows:
//!
//! ```
//! # trait IsNegative { fn is_negative(&self) -> bool;}
//! # use duplicate::duplicate_item;
//! #[duplicate_item(
//!   duplicate!{
//!     [ int_type_nested; [u8]; [u16]; [u32] ]
//!     [
//!       int_type [ int_type_nested ]
//!       implementation [ false ]
//!     ]
//!   }
//!   duplicate!{
//!     [ int_type_nested; [i8]; [i16]; [i32] ]
//!     [
//!       int_type [ int_type_nested ]
//!       implementation [ *self < 0 ]
//!     ]
//!   }
//! )]
//! impl IsNegative for int_type {
//!   fn is_negative(&self) -> bool {
//!     implementation
//!   }
//! }
//!
//! assert!(!42u8.is_negative());
//! assert!(!42u16.is_negative());
//! assert!(!42u32.is_negative());
//! assert!(!42i8.is_negative());
//! assert!(!42i16.is_negative());
//! assert!(!42i32.is_negative());
//! ```
//!
//! It's important to notice that the nested invocation doesn't know it
//! isn't the outer-most invocation and therefore doesn't discriminate between
//! identifiers. We had to use a different identifier in the nested invocations
//! (`int_type_nested`) than in the code (`int_type`), because otherwise the
//! nested invocation would substitute the substitution identifier too, instead
//! of only substituting in the nested invocation's substitute.
//!
//! Nested invocations must produce the syntax of their
//! parent invocation. However, each invocation's private syntax is free
//! to use any syntax type. Notice in our above example, the nested
//! invocations use short syntax but produce verbose syntax for the outer-most
//! invocation.
//!
//! ## Global Substitutions
//!
//! Say we have a function that takes two types as inputs and returns the same
//! types as output:
//!
//! ```
//! # struct Some<T1,T2>(T1,T2);
//! # struct Complex<T>(T);
//! # struct Type<T>(T);
//! # struct WeDont<T1,T2,T3>(T1,T2,T3);
//! # struct Want();
//! # struct To();
//! # struct Repeat();
//! # struct Other();
//! fn some_func(
//!   arg1: Some<Complex<()>, Type<WeDont<Want, To, Repeat>>>,
//!   arg2: Some<Other, Complex<Type<(To, Repeat)>>>)
//!   -> (
//!     Some<Complex<()>, Type<WeDont<Want, To, Repeat>>>,
//!     Some<Other, Complex<Type<(To, Repeat)>>>
//!   )
//! {
//!  # /*
//!   ...
//!  # */
//!  # unimplemented!()
//! }
//! ```
//!
//! Using global substitution, we can avoid repeating the types:
//!
//! ```
//! # struct Some<T1,T2>(T1,T2);
//! # struct Complex<T>(T);
//! # struct Type<T>(T);
//! # struct WeDont<T1,T2,T3>(T1,T2,T3);
//! # struct Want();
//! # struct To();
//! # struct Repeat();
//! # struct Other();
//! # use duplicate::duplicate_item;
//! #[duplicate_item(
//!   typ1 [Some<Complex<()>, Type<WeDont<Want, To, Repeat>>>];
//!   typ2 [Some<Other, Complex<Type<(To, Repeat)>>>];
//! )]
//! fn some_func(arg1: typ1, arg2: typ2) -> (typ1, typ2){
//!  # /*
//!   ...
//!  # */
//!  # unimplemented!()
//! }
//! ```
//!
//! Here we have defined the two global substitution variables `typ1` and
//! `typ2`, and used them in the function definition. Global substitutions have
//! the same syntax as verbose syntax substitution (identifier, optionally
//! followed by parameters, followed by a substitution.) In our example, no
//! short or verbose syntax substitution groups are given. While this is not
//! usually allowed, since we have given at least one global substitution, the
//! item will simply be kept as is, except with the global substitutions.
//!
//! We can follow global substitutions by substitution groups to achieve
//! duplication too:
//!
//! ```
//! # struct Some<T1,T2>(T1,T2);
//! # struct Complex<T>(T);
//! # struct Type<T>(T);
//! # struct WeDont<T1,T2,T3>(T1,T2,T3);
//! # struct Want();
//! # struct To();
//! # struct Repeat();
//! # struct Other();
//! # use duplicate::duplicate_item;
//! #[duplicate_item(
//!   typ1 [Some<Complex<()>, Type<WeDont<Want, To, Repeat>>>];
//!   typ2 [Some<Other, Complex<Type<(To, Repeat)>>>];
//!   method     reference(type);
//!   [get]      [& type];
//!   [get_mut]  [&mut type];
//! )]
//! pub fn method(
//!   arg0: reference([Type<()>]),
//!   arg1: typ1,
//!   arg2: typ2)
//!   -> (reference([typ1]), reference([typ2]))
//! {
//!  # /*
//!   ...
//!  # */
//!  # unimplemented!()
//! }
//! ```
//!
//! Here we duplicate the function to use either shared or mutable reference,
//! while reusing `typ1` and `typ2` in both duplicates.
//!
//! The following additional rules apply when using global substitutions:
//!
//! * All global substitutions must come before any short or verbose syntax
//!   substitution groups.
//! * Global substitution variable are __not__ substituted inside the bodies of
//!   following substitutions. If that is needed, multiple invocations can be
//!   used.
//! * All global substitutions must be separated by `;`, also when followed by
//!   substitution groups.
//!
//! # Crate Features
//!
//! ### `module_disambiguation`
//! __Implicit Module Name Disambiguation__ (Enabled by default)
//!
//! It is sometime beneficial to apply `duplicate_item` to a module, such that
//! all its contents are duplicated at once. However, this will always need the
//! resulting modules to have unique names to avoid the compiler issueing an
//! error. Without `module_disambiguation`, module names must be substituted
//! manually. With `module_disambiguation`, the following will compile
//! successfully:
//!
//! ```
//! # #[cfg(feature="module_disambiguation")] // Ensure test is only run if feature is on
//! # {
//! # use duplicate::duplicate_item;
//! #[duplicate_item(
//!   int_type  max_value;
//!   [ u8 ]    [ 255 ];
//!   [ u16 ]   [ 65_535 ];
//!   [ u32 ]   [ 4_294_967_295 ];
//! )]
//! mod module {
//! # // There is a bug with rustdoc, where these traits cannot
//! # // be imported using 'use super::*'.
//! # // This is a workaround
//! # pub trait IsNegative { fn is_negative(&self) -> bool;}
//! # pub trait IsMax {fn is_max(&self) -> bool;}
//!   impl IsMax for int_type {
//!     fn is_max(&self) -> bool {
//!       *self == max_value
//!     }
//!   }
//!   impl IsNegative for int_type {
//!     fn is_negative(&self) -> bool {
//!       false
//!     }
//!   }
//! }
//! # // This is part of the workaround for not being able to import
//! # // these traits in each module. We rename them so that they
//! # // don't clash with each other.
//! # use module_u8::IsNegative as trait1;
//! # use module_u8::IsMax as trait2;
//! # use module_u16::IsNegative as trait3;
//! # use module_u16::IsMax as trait4;
//! # use module_u32::IsNegative as trait5;
//! # use module_u32::IsMax as trait6;
//!
//! assert!(!42u8.is_max());
//! assert!(!42u16.is_max());
//! assert!(!42u32.is_max());
//! assert!(!42u8.is_negative());
//! assert!(!42u16.is_negative());
//! assert!(!42u32.is_negative());
//! # }
//! ```
//!
//! This works because the three duplicate modules get assigned unique names:
//! `module_u8`, `module_u16`, and `module_u32`. However, this only works if a
//! substitution identifier can be found, where all its substitutions only
//! produce a single identifier and nothing else. Those identifiers are then
//! converted to snake case, and postfixed to the original module's name,
//! e.g., `module  + u8 = module_u8`. The first suitable substitution
//! identifier is chosen.
//!
//! Notes:
//!
//! * The exact way unique names are generated is not part of any stability
//!   guarantee and should not be depended upon. It may change in the future
//!   without bumping the major version.
//! * Only the name of the module is substituted with the disambiguated name.
//!   Any matching identifier in the body of the module is ignored.
//!
//! ### `pretty_errors`
//! __More Detailed Error Messages__ (Enabled by default)
//!
//! Enabling this feature will make error messages indicate exactly where the
//! offending code is. Without this feature, error messages will not provide
//! detailed location indicators for errors.
//!
//! This feature is has no effect on expansion. Therefore, libraries are advised
//! to keep this feature off (note that it's enabled by default)
//! to avoid forcing it on users.
//!
//! # Disclaimer
//!
//! This crate does not try to justify or condone the usage of code duplication
//! instead of proper abstractions.
//! This crate should only be used where it is not possible to reduce code
//! duplication through other means, or where it simply is not worth it.
//!
//! As an example, libraries that have two or more structs/traits with similar
//! APIs might use this macro to test them without having to copy-paste test
//! cases and manually make the needed edits.

#![cfg_attr(feature = "fail-on-warnings", deny(warnings))]

extern crate proc_macro;

mod crate_readme_test;
#[cfg(feature = "module_disambiguation")]
mod module_disambiguation;
mod parse;
mod substitute;
mod token_iter;

use crate::token_iter::{Token, TokenIter};
use parse::*;
use proc_macro::{Delimiter, Ident, Span, TokenStream};
#[cfg(feature = "pretty_errors")]
use proc_macro_error::{abort, proc_macro_error};
use std::collections::HashMap;
use substitute::*;

/// Duplicates the item and substitutes specific identifiers for different code
/// snippets in each duplicate.
///
/// # Short Syntax
/// ```
/// use duplicate::duplicate_item;
/// trait IsMax {
///   fn is_max(&self) -> bool;
/// }
///
/// #[duplicate_item(
///   int_type  max_value;
///   [ u8 ]    [ 255 ];
///   [ u16 ]   [ 65_535 ];
///   [ u32 ]   [ 4_294_967_295 ];
/// )]
/// impl IsMax for int_type {
///   fn is_max(&self) -> bool {
///     *self == max_value
///   }
/// }
///
/// assert!(!42u8.is_max());
/// assert!(!42u16.is_max());
/// assert!(!42u32.is_max());
/// ```
/// The implementation of `IsMax` is duplicated 3 times:
///
/// 1. For the type `u8` and the its maximum value `255`.
/// 2. For the type `u16` and the its maximum value `65_535 `.
/// 3. For the type `u32` and the its maximum value `4_294_967_295 `.
///
/// This syntax must start with a list of all identifiers followed by `;`.
/// Then a `;` seperated list of substitution groups must be given (at least 1
/// group). Every group is a list of substitutions, one for each substitution
/// identifier given in the first line.
/// The substitutions must be enclosed in `[]` but are otherwise
/// free.
///
/// # Verbose Syntax
///
/// ```
/// use duplicate::duplicate_item;
/// trait IsMax {
///   fn is_max(&self) -> bool;
/// }
///
/// #[duplicate_item(
///   [
///     int_type  [ u8 ]
///     max_value [ 255 ]
///   ]
///   [
///     int_type  [ u16 ]
///     max_value [ 65_535 ]
///   ]
///   [
///     max_value [ 4_294_967_295 ]
///     int_type  [ u32 ]
///   ]
/// )]
/// impl IsMax for int_type {
///   fn is_max(&self) -> bool {
///     *self == max_value
///   }
/// }
///
/// assert!(!42u8.is_max());
/// assert!(!42u16.is_max());
/// assert!(!42u32.is_max());
/// ```
/// Has the same functionality as the previous short-syntax example.
///
/// For each duplicate needed, a _substitution group_ must be given enclosed in
/// `[]`. A substitution group is a set of identifiers and
/// substitution pairs, like in the short syntax, but there can only be one
/// substitution per identifier. All substitution groups must have the same
/// identifiers, however their order is unimportant, as can be seen from the
/// last substitution group above, where `max_value` comes before `int_type`.
///
/// # Parameterized Substitutoin
///
/// ```
/// use duplicate::duplicate_item;
/// struct VecWrap<T>(Vec<T>);
///
/// impl<T> VecWrap<T> {
///   #[duplicate_item(
///     method     reference(lifetime, type);
///     [get]      [& 'lifetime type];
///     [get_mut]  [& 'lifetime mut type];
///   )]
///   pub fn method<'a>(self: reference([a],[Self]),idx: usize) -> Option<reference([a],[T])> {
///     self.0.method(idx)
///   }
/// }
///
/// let mut vec = VecWrap(vec![1,2,3]);
/// assert_eq!(*vec.get(0).unwrap(), 1);
/// *vec.get_mut(1).unwrap() = 5;
/// assert_eq!(*vec.get(1).unwrap(), 5);
/// ```
///
/// This implements two versions of the method:
///
/// - `get`: Borrows `self` immutably and return a shared reference.
/// - `get_mut`: Borrows `self` mutably and returns a mutable reference.
///
/// If an identifier is followed by parenthises (in both its declaration and its
/// use), a set of parameters can be provided to customize the subtituion for
/// each use. In the declaration a list of identifiers is given, which can be
/// used in its substitutions. When using the identifier, argument code snippets
/// must be given in a comma separated list, with each argument being inclosed
/// in `[]`.
///
/// Parameterized substitution is also available for the verbose syntax:
///
/// ```
/// # use duplicate::duplicate_item;
/// # struct VecWrap<T>(Vec<T>);
/// impl<T> VecWrap<T> {
///   #[duplicate_item(
///     [
///       method                     [get]
///       reference(lifetime, type)  [& 'lifetime type]
///     ]
///     [
///       method                     [get_mut]
///       reference(lifetime, type)  [& 'lifetime mut type]
///     ]
///   )]
///   pub fn method<'a>(self: reference([a],[Self]),idx: usize) -> Option<reference([a],[T])> {
///     self.0.method(idx)
///   }
/// }
/// # let mut vec = VecWrap(vec![1,2,3]);
/// # assert_eq!(*vec.get(0).unwrap(), 1);
/// # *vec.get_mut(1).unwrap() = 5;
/// # assert_eq!(*vec.get(1).unwrap(), 5);
/// ```
///
/// # Nested Invocation
/// ```
/// use duplicate::duplicate_item;
/// trait IsNegative {
///   fn is_negative(&self) -> bool;
/// }
///
/// #[duplicate_item(
///   int_type implementation;
///   duplicate!{
///     [                                  // -+
///       int_type_nested;[u8];[u16];[u32] //  | Nested invocation producing 3
///     ]                                  //  | substitution groups
///     [ int_type_nested ] [ false ];     //  |
///   }                                    // -+
///   [ i8 ] [ *self < 0 ]                 // -- Substitution group 4
/// )]
/// impl IsNegative for int_type {
///   fn is_negative(&self) -> bool {
///     implementation
///   }
/// }
///
/// assert!(!42u8.is_negative());
/// assert!(!42u16.is_negative());
/// assert!(!42u32.is_negative());
/// assert!(!42i8.is_negative());
/// ```
///
/// This implements `IsNegative` 4 times:
///
/// 1. For the type `u8` with the implementation of the method simply returning
/// `false`. 1. For the type `u16` the same way as `u8`.
/// 1. For the type `u32` the same way as `u8` and `u16`.
/// 1. For `i8` with the implementation of the method checking whether it's less
/// than `0`.
///
/// We used `#` to start a _nested invocation_ of the macro. In it, we use the
/// identifier `int_type_nested` to substitute the 3 unsigned integer types into
/// the body of the nested invocation, which is a substitution group for the
/// outer macro invocation. This therefore produces the three substitution
/// groups that makes the outer macro make the duplicates for the unsigned
/// integers.
///
/// This code is identical to the following, which doesn't use nested
/// invocation:
///
/// ```
/// # use duplicate::duplicate_item;
/// # trait IsNegative {
/// #   fn is_negative(&self) -> bool;
/// # }
/// #[duplicate_item(
///   int_type implementation;
///   [ u8 ]  [ false ];
///   [ u16 ] [ false ];
///   [ u32 ] [ false ];
///   [ i8 ]  [ *self < 0 ]
/// )]
/// impl IsNegative for int_type {
///   fn is_negative(&self) -> bool {
///     implementation
///   }
/// }
/// # assert!(!42u8.is_negative());
/// # assert!(!42u16.is_negative());
/// # assert!(!42u32.is_negative());
/// # assert!(!42i8.is_negative());
/// ```
///
/// Nested invocation is also available for the verbose syntax:
///
/// ```
/// use duplicate::duplicate_item;
/// trait IsNegative {
///   fn is_negative(&self) -> bool;
/// }
///
/// #[duplicate_item(
///   duplicate!{                            // -+
///     [ int_type_nested;[u8];[u16];[u32] ] //  |
///     [                                    //  | Nested invocation producing 3
///       int_type [ int_type_nested ]       //  | substitution groups
///       implementation [ false ]           //  |
///     ]                                    //  |
///   }                                      // -+
///   [                                      // -+
///     int_type [ i8 ]                      //  | Substitution group 4
///     implementation [ *self < 0 ]         //  |
///   ]                                      // -+
/// )]
/// impl IsNegative for int_type {
///   fn is_negative(&self) -> bool {
///     implementation
///   }
/// }
///
/// assert!(!42u8.is_negative());
/// assert!(!42u16.is_negative());
/// assert!(!42u32.is_negative());
/// assert!(!42i8.is_negative());
/// ```
///
/// ## Global Substitution
///
/// ```
/// # struct Some<T1,T2>(T1,T2);
/// # struct Complex<T>(T);
/// # struct Type<T>(T);
/// # struct WeDont<T1,T2,T3>(T1,T2,T3);
/// # struct Want();
/// # struct To();
/// # struct Repeat();
/// # struct Other();
/// # use duplicate::duplicate_item;
/// #[duplicate_item(
///   typ1 [Some<Complex<()>, Type<WeDont<Want, To, Repeat>>>];
///   typ2 [Some<Other, Complex<Type<(To, Repeat)>>>];
///   method     reference(type);
///   [get]      [& type];
///   [get_mut]  [&mut type];
/// )]
/// pub fn method(
///   arg0: reference([Type<()>]),
///   arg1: typ1,
///   arg2: typ2)
///   -> (reference([typ1]), reference([typ2]))
/// {
///  # /*
///   ...
///  # */
///  # unimplemented!()
/// }
/// ```
///
/// The global substitutions (`typ1` and `typ2`) are substituted in both
/// duplicates of the function. Global substitutions have the same syntax as
/// verbose syntax substitutions, are `;` separated (even from following
/// susbtitutions groups), must all be defined at the beginning, and aren't
/// usable in the invocation itself but only in the code being duplicated.
#[proc_macro_attribute]
#[cfg_attr(feature = "pretty_errors", proc_macro_error)]
pub fn duplicate_item(attr: TokenStream, item: TokenStream) -> TokenStream
{
	match duplicate_impl(attr, item)
	{
		Ok(result) => result,
		Err(err) => abort(err.0, &err.1),
	}
}

/// Duplicates the given code and substitutes specific identifiers
/// for different code snippets in each duplicate.
///
/// This is a function-like procedural macro version of [`duplicate_item`].
/// It's functionality is the exact same, and they share the same invocation
/// syntax(es). The only difference is that `duplicate` doesn't only
/// duplicate the following item, but duplicate all code given to it after the
/// invocation block.
///
/// ## Usage
///
/// A call to `duplicate` must start with a `[]` containing the
/// duplication invocation. Everything after that will then be duplicated
/// according to the invocation.
///
/// Given the following `duplicate` call:
/// ```
/// use duplicate::duplicate;
/// # trait IsMax {
/// #   fn is_max(&self) -> bool;
/// # }
///
/// duplicate!{
///   [
///     // Some duplication invocation
/// #     int_type  max_value;
/// #     [ u8 ]    [ 255 ];
/// #     [ u16 ]   [ 65_535 ];
/// #     [ u32 ]   [ 4_294_967_295 ];
///   ]
///   // Some code to duplicate
/// #   impl IsMax for int_type {
/// #     fn is_max(&self) -> bool {
/// #       *self == max_value
/// #     }
/// #   }
/// }
/// # // We use an explicit 'main' function to ensure the previous
/// # // 'duplicate' call doesn't get treated as a statement,
/// # // which illegal before rust 1.45.
/// # fn main() {
/// #   assert!(!42u8.is_max());
/// #   assert!(!42u16.is_max());
/// #   assert!(!42u32.is_max());
/// # }
/// ```
/// It is equivalent to the following invocation using [`duplicate_item`]:
/// ```
/// use duplicate::duplicate_item;
/// # trait IsMax {
/// #   fn is_max(&self) -> bool;
/// # }
///
/// #[duplicate_item(
///   // Some duplication invocation
/// #   int_type  max_value;
/// #   [ u8 ]    [ 255 ];
/// #   [ u16 ]   [ 65_535 ];
/// #   [ u32 ]   [ 4_294_967_295 ];
/// )]
/// // Some code to duplicate
/// # impl IsMax for int_type {
/// #   fn is_max(&self) -> bool {
/// #     *self == max_value
/// #   }
/// # }
/// # assert!(!42u8.is_max());
/// # assert!(!42u16.is_max());
/// # assert!(!42u32.is_max());
/// ```
///
/// For more details on about invocations and features see [`duplicate_item`].
///
/// [`duplicate_item`]: attr.duplicate_item.html
#[proc_macro]
#[cfg_attr(feature = "pretty_errors", proc_macro_error)]
pub fn duplicate(stream: TokenStream) -> TokenStream
{
	let mut iter: TokenIter = stream.into();

	let result = match iter.next_group(
		Some(Delimiter::Bracket),
		"Expected invocation within brackets: [...]",
	)
	{
		Ok((invocation, _)) =>
		{
			let invocation_body = invocation.to_token_stream();

			duplicate_impl(invocation_body, iter.to_token_stream())
		},
		Err(err) => Err(err),
	};

	match result
	{
		Ok(result) => result,
		Err(err) => abort(err.0, &err.1),
	}
}

/// A result that specified where in the token stream the error occured
/// and is accompanied by a message.
type Result<T> = std::result::Result<T, (Span, String)>;

/// Implements the macro.
///
/// `allow_short`: If true, accepts short syntax
fn duplicate_impl(attr: TokenStream, item: TokenStream) -> Result<TokenStream>
{
	let dup_def = parse_invocation(attr)?;

	duplicate_and_substitute(
		item,
		&dup_def.global_substitutions,
		dup_def.duplications.iter(),
	)
}

/// Terminates with an error and produces the given message.
///
/// The `pretty_errors` feature can be enabled, the span is shown
/// with the error message.
#[allow(unused_variables)]
fn abort(span: Span, msg: &str) -> !
{
	#[cfg(feature = "pretty_errors")]
	{
		abort!(span, msg);
	}
	#[cfg(not(feature = "pretty_errors"))]
	{
		panic!("{}", msg);
	}
}

#[derive(Debug)]
struct SubstitutionGroup
{
	substitutions: HashMap<String, Substitution>,
	#[cfg(feature = "module_disambiguation")]
	identifier_order: Vec<String>,
}

impl SubstitutionGroup
{
	fn new() -> Self
	{
		Self {
			substitutions: HashMap::new(),
			#[cfg(feature = "module_disambiguation")]
			identifier_order: Vec::new(),
		}
	}

	fn add_substitution(&mut self, ident: Ident, subst: Substitution) -> Result<()>
	{
		if self
			.substitutions
			.insert(ident.to_string(), subst)
			.is_some()
		{
			Err((
				ident.span(),
				"Substitution identifier assigned mutiple substitutions".into(),
			))
		}
		else
		{
			#[cfg(feature = "module_disambiguation")]
			{
				self.identifier_order.push(ident.to_string());
			}
			Ok(())
		}
	}

	fn substitution_of(&self, ident: &String) -> Option<&Substitution>
	{
		self.substitutions.get(ident)
	}

	fn identifiers(&self) -> impl Iterator<Item = &String>
	{
		self.substitutions.keys()
	}

	fn identifiers_with_args(&self) -> impl Iterator<Item = (&String, usize)>
	{
		self.identifiers()
			.map(move |ident| (ident, self.substitution_of(ident).unwrap().argument_count()))
	}

	#[cfg(feature = "module_disambiguation")]
	fn identifiers_ordered(&self) -> impl Iterator<Item = &String>
	{
		self.identifier_order.iter()
	}
}

/// Defines how duplication should happen.
struct DuplicationDefinition
{
	pub global_substitutions: SubstitutionGroup,
	pub duplications: Vec<SubstitutionGroup>,
}

/// Checks whether item is a module and whether it then needs disambiguation.
///
/// Returns the identifier of the found module (if found) and the substitution
/// identifier that should be used to disambiguate it in each duplicate.
/// Returns none if no disambiguation is needed.
pub(crate) fn disambiguate_module<'a>(
	item: &TokenStream,
	sub_groups: impl Iterator<Item = &'a SubstitutionGroup> + Clone,
) -> Result<Option<(Ident, String)>>
{
	let mut sub_groups = sub_groups.peekable();

	match (sub_groups.peek(), get_module_name(&item))
	{
		(Some(sub), Some(ref module)) if sub.substitution_of(&module.to_string()).is_none() =>
		{
			#[cfg(not(feature = "module_disambiguation"))]
			{
				Err((
					module.span(),
					format!(
						"Duplicating the module '{}' without giving each duplicate a unique \
						 name.\nHint: Enable the 'duplicate' crate's 'module_disambiguation' \
						 feature to automatically generate unique module names.",
						module.to_string()
					),
				))
			}
			#[cfg(feature = "module_disambiguation")]
			{
				let span = module.span();
				Ok(Some((
					module.clone(),
					crate::module_disambiguation::find_simple(sub_groups, span)?,
				)))
			}
		},
		_ => Ok(None),
	}
}

/// Extract the name of the module assuming the given item is a module
/// declaration.
///
/// If not, returns None.
fn get_module_name(item: &TokenStream) -> Option<Ident>
{
	let mut iter: TokenIter = item.clone().into();

	iter.expect_simple(|t| Token::is_ident(t, Some("mod")), None)
		.ok()?;

	let module = iter.extract_identifier(None).ok()?;
	iter.next_group(Some(Delimiter::Brace), "").ok()?;
	Some(module)
}