1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
use std::collections::HashMap;
use std::error::Error as StdError;
use std::fmt;

use rustc_serialize::Decodable;

use parse::Parser;
use synonym::SynonymMap;

use self::Value::{Switch, Counted, Plain, List};
use self::Error::{Usage, Argv, NoMatch, Decode, WithProgramUsage, Help, Version};

/// Represents the different types of Docopt errors.
///
/// This error type has a lot of variants. In the common case, you probably
/// don't care why Docopt has failed, and would rather just quit the program
/// and show an error message instead. The `exit` method defined on the `Error`
/// type will do just that. It will also set the exit code appropriately
/// (no error for `--help` or `--version`, but an error code for bad usage,
/// bad argv, no match or bad decode).
///
/// ### Example
///
/// Generally, you want to parse the usage string, try to match the argv
/// and then quit the program if there was an error reported at any point
/// in that process. This can be achieved like so:
///
/// ```no_run
/// use docopt::Docopt;
///
/// static USAGE: &'static str = "
/// Usage: ...
/// ";
///
/// let args = Docopt::new(USAGE)
///                   .and_then(|d| d.parse())
///                   .unwrap_or_else(|e| e.exit());
/// ```
#[derive(Debug)]
pub enum Error {
    /// Parsing the usage string failed.
    ///
    /// This error can only be triggered by the programmer, i.e., the writer
    /// of the Docopt usage string. This error is usually indicative of a bug
    /// in your program.
    Usage(String),

    /// Parsing the argv specified failed.
    ///
    /// The payload is a string describing why the arguments provided could not
    /// be parsed.
    ///
    /// This is distinct from `NoMatch` because it will catch errors like
    /// using flags that aren't defined in the usage string.
    Argv(String),

    /// The given argv parsed successfully, but it did not match any example
    /// usage of the program.
    ///
    /// Regrettably, there is no descriptive message describing *why* the
    /// given argv didn't match any of the usage strings.
    NoMatch,

    /// This indicates a problem decoding a successful argv match into a
    /// decodable value.
    Decode(String),

    /// Parsing failed, and the program usage should be printed next to the
    /// failure message. Typically this wraps `Argv` and `NoMatch` errors.
    WithProgramUsage(Box<Error>, String),

    /// Decoding or parsing failed because the command line specified that the
    /// help message should be printed.
    Help,

    /// Decoding or parsing failed because the command line specified that the
    /// version should be printed
    ///
    /// The version is included as a payload to this variant.
    Version(String),
}

impl Error {
    /// Return whether this was a fatal error or not.
    ///
    /// Non-fatal errors include requests to print the help or version
    /// information of a program, while fatal errors include those such as
    /// failing to decode or parse.
    pub fn fatal(&self) -> bool {
        match *self {
            Help | Version(..) => false,
            Usage(..) | Argv(..) | NoMatch | Decode(..) => true,
            WithProgramUsage(ref b, _) => b.fatal(),
        }
    }

    /// Print this error and immediately exit the program.
    ///
    /// If the error is non-fatal (e.g., `Help` or `Version`), then the
    /// error is printed to stdout and the exit status will be `0`. Otherwise,
    /// when the error is fatal, the error is printed to stderr and the
    /// exit status will be `1`.
    pub fn exit(&self) -> ! {
        if self.fatal() {
            werr!("{}\n", self);
            ::std::process::exit(1)
        } else {
            println!("{}", self);
            ::std::process::exit(0)
        }
    }
}

impl fmt::Display for Error {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match *self {
            WithProgramUsage(ref other, ref usage) => {
                let other = other.to_string();
                if other.is_empty() {
                    write!(f, "{}", usage)
                } else {
                    write!(f, "{}\n\n{}", other, usage)
                }
            }
            Help => write!(f, ""),
            NoMatch => write!(f, "Invalid arguments."),
            Usage(ref s) | Argv(ref s) | Decode(ref s) | Version(ref s) => {
                write!(f, "{}", s)
            }
        }
    }
}

impl StdError for Error {
    fn description(&self) -> &str {
        match *self {
            Usage(..) => "invalid usage string",
            Argv(..) => "failed to parse specified argv",
            NoMatch => "could not match specified argv",
            Decode(..) => "failed to decode",
            WithProgramUsage(..) => "failed to parse specified argv",
            Help => "help message requested",
            Version(..) => "version message requested",
        }
    }

    fn cause(&self) -> Option<&StdError> {
        match *self {
            WithProgramUsage(ref cause, _) => Some(&**cause),
            _ => None,
        }
    }
}

/// The main Docopt type, which is constructed with a Docopt usage string.
///
/// This can be used to match command line arguments to produce a `ArgvMap`.
#[derive(Clone, Debug)]
pub struct Docopt {
    p: Parser,
    argv: Option<Vec<String>>,
    options_first: bool,
    help: bool,
    version: Option<String>,
}

impl Docopt {
    /// Parse the Docopt usage string given.
    ///
    /// The `Docopt` value returned may be used immediately to parse command
    /// line arguments with a default configuration.
    ///
    /// If there was a problem parsing the usage string, a `Usage` error
    /// is returned.
    pub fn new<S>(usage: S) -> Result<Docopt, Error>
            where S: ::std::ops::Deref<Target=str> {
        Parser::new(usage.deref())
               .map_err(Usage)
               .map(|p| Docopt {
                   p: p,
                   argv: None,
                   options_first: false,
                   help: true,
                   version: None,
                })
    }

    /// Parse and decode the given argv.
    ///
    /// This is a convenience method for
    /// `parse().and_then(|vals| vals.decode())`.
    ///
    /// For details on how decoding works, please see the documentation for
    /// `ArgvMap`.
    pub fn decode<D>(&self) -> Result<D, Error> where D: Decodable {
        self.parse().and_then(|vals| vals.decode())
    }

    /// Parse command line arguments and try to match them against a usage
    /// pattern specified in the Docopt string.
    ///
    /// If there is a match, then an `ArgvMap` is returned, which maps
    /// flags, commands and arguments to values.
    ///
    /// If parsing the command line arguments fails, then an `Argv` error is
    /// returned. If parsing succeeds but there is no match, then a `NoMatch`
    /// error is returned. Both of these errors are always returned inside a
    /// `WithProgramUsage` error.
    ///
    /// If special handling of `help` or `version` is enabled (the former is
    /// enabled by default), then `Help` or `Version` errors are returned
    /// if `--help` or `--version` is present.
    pub fn parse(&self) -> Result<ArgvMap, Error> {
        let argv = self.argv.clone().unwrap_or_else(|| Docopt::get_argv());
        let vals = try!(
            self.p.parse_argv(argv, self.options_first)
                .map_err(|s| self.err_with_usage(Argv(s)))
                .and_then(|argv|
                    match self.p.matches(&argv) {
                        Some(m) => Ok(ArgvMap { map: m }),
                        None => Err(self.err_with_usage(NoMatch)),
                    }));
        if self.help && vals.get_bool("--help") {
            return Err(self.err_with_full_doc(Help));
        }
        match self.version {
            Some(ref v) if vals.get_bool("--version") => {
                return Err(Version(v.clone()))
            }
            _ => {},
        }
        Ok(vals)
    }

    /// Set the argv to be used for Docopt parsing.
    ///
    /// By default, when no argv is set, and it is automatically taken from
    /// `std::os::args()`.
    ///
    /// The `argv` given *must* be the full set of `argv` passed to the
    /// program. e.g., `["cp", "src", "dest"]` is right while `["src", "dest"]`
    /// is wrong.
    pub fn argv<I, S>(mut self, argv: I) -> Docopt
               where I: Iterator<Item=S>, S: Into<String> {
        self.argv = Some(
            argv.skip(1).map(|s| s.into()).collect()
        );
        self
    }

    /// Enables the "options first" Docopt behavior.
    ///
    /// The options first behavior means that all flags *must* appear before
    /// position arguments. That is, after the first position argument is
    /// seen, all proceeding arguments are interpreted as positional
    /// arguments unconditionally.
    pub fn options_first(mut self, yes: bool) -> Docopt {
        self.options_first = yes;
        self
    }

    /// Enables automatic handling of `--help`.
    ///
    /// When this is enabled and `--help` appears anywhere in the arguments,
    /// then a `Help` error will be returned. You may then use the `exit`
    /// method on the error value to conveniently quit the program (which will
    /// print the full usage string to stdout).
    ///
    /// Note that for this to work, `--help` must be a valid pattern.
    ///
    /// When disabled, there is no special handling of `--help`.
    pub fn help(mut self, yes: bool) -> Docopt {
        self.help = yes;
        self
    }

    /// Enables automatic handling of `--version`.
    ///
    /// When this is enabled and `--version` appears anywhere in the arguments,
    /// then a `Version(s)` error will be returned, where `s` is the string
    /// given here. You may then use the `exit` method on the error value to
    /// convenient quit the program (which will print the version to stdout).
    ///
    /// When disabled (a `None` value), there is no special handling of
    /// `--version`.
    pub fn version(mut self, version: Option<String>) -> Docopt {
        self.version = version;
        self
    }

    #[doc(hidden)]
    // Exposed for use in `docopt_macros`.
    pub fn parser<'a>(&'a self) -> &'a Parser {
        &self.p
    }

    fn err_with_usage(&self, e: Error) -> Error {
        WithProgramUsage(
            Box::new(e), self.p.usage.trim().to_string())
    }

    fn err_with_full_doc(&self, e: Error) -> Error {
        WithProgramUsage(
            Box::new(e), self.p.full_doc.trim().to_string())
    }

    fn get_argv() -> Vec<String> {
        // Hmm, we should probably handle a Unicode decode error here... ---AG
        ::std::env::args().skip(1).map(|v| v.to_string()).collect()
    }
}

/// A map containing matched values from command line arguments.
///
/// The keys are just as specified in Docopt: `--flag` for a long flag or
/// `-f` for a short flag. (If `-f` is a synonym for `--flag`, then either
/// key will work.) `ARG` or `<arg>` specify a positional argument and `cmd`
/// specifies a command.
#[derive(Clone)]
pub struct ArgvMap {
    #[doc(hidden)]
    pub map: SynonymMap<String, Value>,
}

impl ArgvMap {
    /// Tries to decode the map of values into a struct.
    ///
    /// This method should always be called to decode a `ArgvMap` into
    /// a struct. All fields of the struct must map to a corresponding key
    /// in the `ArgvMap`. To this end, each member must have a special prefix
    /// corresponding to the different kinds of patterns in Docopt. There are
    /// three prefixes: `flag_`, `arg_` and `cmd_` which respectively
    /// correspond to short/long flags, positional arguments and commands.
    ///
    /// If a Docopt item has a `-` in its name, then it is converted to an `_`.
    ///
    /// # Example
    ///
    /// ```rust
    /// # extern crate docopt;
    /// # extern crate rustc_serialize;
    /// # fn main() {
    /// use docopt::Docopt;
    ///
    /// static USAGE: &'static str = "
    /// Usage: cargo [options] (build | test)
    ///        cargo --help
    ///
    /// Options: -v, --verbose
    ///          -h, --help
    /// ";
    ///
    /// #[derive(RustcDecodable)]
    /// struct Args {
    ///   cmd_build: bool,
    ///   cmd_test: bool,
    ///   flag_verbose: bool,
    ///   flag_h: bool,
    /// }
    ///
    /// let argv = || vec!["cargo", "build", "-v"].into_iter();
    /// let args: Args = Docopt::new(USAGE)
    ///                         .and_then(|d| d.argv(argv()).decode())
    ///                         .unwrap_or_else(|e| e.exit());
    /// assert!(args.cmd_build && !args.cmd_test
    ///         && args.flag_verbose && !args.flag_h);
    /// # }
    /// ```
    ///
    /// Note that in the above example, `flag_h` is used but `flag_help`
    /// could also be used. (In fact, both could be used at the same time.)
    ///
    /// In this example, only the `bool` type was used, but any type satisfying
    /// the `Decodable` trait is valid.
    pub fn decode<T: Decodable>(self) -> Result<T, Error> {
        Decodable::decode(&mut Decoder { vals: self, stack: vec!() })
    }

    /// Finds the value corresponding to `key` and calls `as_bool()` on it.
    /// If the key does not exist, `false` is returned.
    pub fn get_bool(&self, key: &str) -> bool {
        self.find(key).map(|v| v.as_bool()).unwrap_or(false)
    }

    /// Finds the value corresponding to `key` and calls `as_count()` on it.
    /// If the key does not exist, `0` is returned.
    pub fn get_count(&self, key: &str) -> u64 {
        self.find(key).map(|v| v.as_count()).unwrap_or(0)
    }

    /// Finds the value corresponding to `key` and calls `as_str()` on it.
    /// If the key does not exist, `""` is returned.
    pub fn get_str<'a>(&'a self, key: &str) -> &'a str {
        self.find(key).map(|v| v.as_str()).unwrap_or("")
    }

    /// Finds the value corresponding to `key` and calls `as_vec()` on it.
    /// If the key does not exist, `vec!()` is returned.
    pub fn get_vec<'a>(&'a self, key: &str) -> Vec<&'a str> {
        self.find(key).map(|v| v.as_vec()).unwrap_or(vec!())
    }

    /// Return the raw value corresponding to some `key`.
    ///
    /// `key` should be a string in the traditional Docopt format. e.g.,
    /// `<arg>` or `--flag`.
    pub fn find<'a>(&'a self, key: &str) -> Option<&'a Value> {
        self.map.find(&key.to_string())
    }

    /// Return the number of values, not including synonyms.
    pub fn len(&self) -> usize {
        self.map.len()
    }

    /// Converts a Docopt key to a struct field name.
    /// This makes a half-hearted attempt at making the key a valid struct
    /// field name (like replacing `-` with `_`), but it does not otherwise
    /// guarantee that the result is a valid struct field name.
    #[doc(hidden)]
    pub fn key_to_struct_field(name: &str) -> String {
        fn sanitize(name: &str) -> String {
            name.replace("-", "_")
        }

        let r = regex!(r"^(?:--?(?P<flag>\S+)|(?:(?P<argu>\p{Lu}+)|<(?P<argb>[^>]+)>)|(?P<cmd>\S+))$");
        r.replace(name, |cap: &::regex::Captures| {
            let (flag, cmd) = (
                cap.name("flag").unwrap_or(""),
                cap.name("cmd").unwrap_or(""),
            );
            let (argu, argb) = (
                cap.name("argu").unwrap_or(""),
                cap.name("argb").unwrap_or(""),
            );
            let (prefix, name) =
                if !flag.is_empty() {
                    ("flag_", flag)
                } else if !argu.is_empty() {
                    ("arg_", argu)
                } else if !argb.is_empty() {
                    ("arg_", argb)
                } else if !cmd.is_empty() {
                    ("cmd_", cmd)
                } else {
                    panic!("Unknown ArgvMap key: '{}'", name)
                };
            let mut prefix = prefix.to_string();
            prefix.push_str(&sanitize(name));
            prefix
        })
    }

    /// Converts a struct field name to a Docopt key.
    #[doc(hidden)]
    pub fn struct_field_to_key(field: &str) -> String {
        fn desanitize(name: &str) -> String {
            name.replace("_", "-")
        }
        let name =
            if field.starts_with("flag_") {
                let name = regex!(r"^flag_").replace(field, "");
                let mut pre_name = (if name.len() == 1 { "-" } else { "--" })
                                   .to_string();
                pre_name.push_str(&*name);
                pre_name
            } else if field.starts_with("arg_") {
                let name = regex!(r"^arg_").replace(field, "");
                if regex!(r"^\p{Lu}+$").is_match(&name) {
                    name
                } else {
                    let mut pre_name = "<".to_string();
                    pre_name.push_str(&*name);
                    pre_name.push('>');
                    pre_name
                }
            } else if field.starts_with("cmd_") {
                { regex!(r"^cmd_") }.replace(field, "")
            } else {
                panic!("Unrecognized struct field: '{}'", field)
            };
        desanitize(&*name)
    }
}

impl fmt::Debug for ArgvMap {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        if self.len() == 0 {
            return write!(f, "{{EMPTY}}");
        }

        // This is a little crazy, but we want to group synonyms with
        // their keys and sort them for predictable output.
        let reverse: HashMap<&String, &String> =
            self.map.synonyms().map(|(from, to)| (to, from)).collect();
        let mut keys: Vec<&String> = self.map.keys().collect();
        keys.sort();
        let mut first = true;
        for &k in keys.iter() {
            if !first { try!(write!(f, "\n")); } else { first = false; }
            match reverse.get(&k) {
                None => {
                    try!(write!(f, "{} => {:?}", k, self.map.get(k)))
                }
                Some(s) => {
                    try!(write!(f, "{}, {} => {:?}", s, k, self.map.get(k)))
                }
            }
        }
        Ok(())
    }
}

/// A matched command line value.
///
/// The value can be a boolean, counted repetition, a plain string or a list
/// of strings.
///
/// The various `as_{bool,count,str,vec}` methods provide convenient access
/// to values without destructuring manually.
#[derive(Clone, Debug, PartialEq)]
pub enum Value {
    /// A boolean value from a flag that has no argument.
    ///
    /// The presence of a flag means `true` and the absence of a flag
    /// means `false`.
    Switch(bool),

    /// The number of occurrences of a repeated flag.
    Counted(u64),

    /// A positional or flag argument.
    ///
    /// This is `None` when the positional argument or flag is not present.
    /// Note that it is possible to have `Some("")` for a present but empty
    /// argument.
    Plain(Option<String>),

    /// A List of positional or flag arguments.
    ///
    /// This list may be empty when no arguments or flags are present.
    List(Vec<String>),
}

impl Value {
    /// Returns the value as a bool.
    ///
    /// Counted repetitions are `false` if `0` and `true` otherwise.
    /// Plain strings are `true` if present and `false` otherwise.
    /// Lists are `true` if non-empty and `false` otherwise.
    pub fn as_bool(&self) -> bool {
        match *self {
            Switch(b) => b,
            Counted(n) => n > 0,
            Plain(None) => false,
            Plain(Some(_)) => true,
            List(ref vs) => !vs.is_empty(),
        }
    }

    /// Returns the value as a count of the number of times it occurred.
    ///
    /// Booleans are `1` if `true` and `0` otherwise.
    /// Plain strings are `1` if present and `0` otherwise.
    /// Lists correspond to its length.
    pub fn as_count(&self) -> u64 {
        match *self {
            Switch(b) => if b { 1 } else { 0 },
            Counted(n) => n,
            Plain(None) => 0,
            Plain(Some(_)) => 1,
            List(ref vs) => vs.len() as u64,
        }
    }

    /// Returns the value as a string.
    ///
    /// All values return an empty string except for a non-empty plain string.
    pub fn as_str<'a>(&'a self) -> &'a str {
        match *self {
            Switch(_) | Counted(_) | Plain(None) | List(_) => "",
            Plain(Some(ref s)) => &**s,
        }
    }

    /// Returns the value as a list of strings.
    ///
    /// Booleans, repetitions and empty strings correspond to an empty list.
    /// Plain strings correspond to a list of length `1`.
    pub fn as_vec<'a>(&'a self) -> Vec<&'a str> {
        match *self {
            Switch(_) | Counted(_) | Plain(None) => vec![],
            Plain(Some(ref s)) => vec![&**s],
            List(ref vs) => vs.iter().map(|s| &**s).collect(),
        }
    }
}

/// Decoder for `ArgvMap` into your own `Decodable` types.
///
/// In general, you shouldn't have to use this type directly. It is exposed
/// in case you want to write a generic function that produces a decodable
/// value. For example, here's a function that takes a usage string, an argv
/// and produces a decodable value:
///
/// ```rust
/// # extern crate docopt;
/// # extern crate rustc_serialize;
/// # fn main() {
/// use docopt::Docopt;
/// use rustc_serialize::Decodable;
///
/// fn decode<D: Decodable>(usage: &str, argv: &[&str])
///                         -> Result<D, docopt::Error> {
///     Docopt::new(usage)
///            .and_then(|d| d.argv(argv.iter().cloned()).decode())
/// }
/// # }
pub struct Decoder {
    vals: ArgvMap,
    stack: Vec<DecoderItem>,
}

#[derive(Debug)]
struct DecoderItem {
    key: String,
    struct_field: String,
    val: Option<Value>,
}

macro_rules! derr(
    ($($arg:tt)*) => (return Err(Decode(format!($($arg)*))))
);

impl Decoder {
    fn push(&mut self, struct_field: &str) {
        let key = ArgvMap::struct_field_to_key(struct_field);
        self.stack.push(DecoderItem {
            key: key.clone(),
            struct_field: struct_field.to_string(),
            val: self.vals.find(&*key).map(|v| v.clone()),
        });
    }

    fn pop(&mut self) -> Result<DecoderItem, Error> {
        match self.stack.pop() {
            None => derr!("Could not decode value into unknown key."),
            Some(it) => Ok(it),
        }
    }

    fn pop_key_val(&mut self) -> Result<(String, Value), Error> {
        let it = try!(self.pop());
        match it.val {
            None => derr!("Could not find argument '{}' (from struct \
                           field '{}').", it.key, it.struct_field),
            Some(v) => Ok((it.key, v)),
        }
    }

    fn pop_val(&mut self) -> Result<Value, Error> {
        let (_, v) = try!(self.pop_key_val());
        Ok(v)
    }

    fn to_number(&mut self, expect: &str) -> Result<u64, Error> {
        let (k, v) = try!(self.pop_key_val());
        match v {
            Counted(n) => Ok(n),
            _ => {
                match v.as_str().parse() {
                    Err(_) => derr!("Could not decode '{}' to {} for '{}'.",
                                    v.as_str(), expect, k),
                    Ok(v) => Ok(v),
                }
            }
        }
    }

    fn to_float(&mut self, expect: &str) -> Result<f64, Error> {
        let (k, v) = try!(self.pop_key_val());
        match v {
            Counted(n) => Ok(n as f64),
            _ => {
                match v.as_str().parse() {
                    Err(_) => derr!("Could not decode '{}' to {} for '{}'.",
                                    v.as_str(), expect, k),
                    Ok(v) => Ok(v),
                }
            }
        }
    }
}

macro_rules! read_num {
    ($name:ident, $ty:ty) => (
        fn $name(&mut self) -> Result<$ty, Error> {
            self.to_number(stringify!($ty)).map(|n| n as $ty)
        }
    );
}

impl ::rustc_serialize::Decoder for Decoder {
    type Error = Error;

    fn error(&mut self, err: &str) -> Error {
        Decode(err.to_string())
    }

    fn read_nil(&mut self) -> Result<(), Error> {
        // I don't know what the right thing is here, so just fail for now.
        panic!("I don't know how to read into a nil value.")
    }

    read_num!(read_usize, usize);
    read_num!(read_u64, u64);
    read_num!(read_u32, u32);
    read_num!(read_u16, u16);
    read_num!(read_u8, u8);
    read_num!(read_isize, isize);
    read_num!(read_i64, i64);
    read_num!(read_i32, i32);
    read_num!(read_i16, i16);
    read_num!(read_i8, i8);

    fn read_bool(&mut self) -> Result<bool, Error> {
        self.pop_val().map(|v| v.as_bool())
    }

    fn read_f64(&mut self) -> Result<f64, Error> {
        self.to_float("f64")
    }

    fn read_f32(&mut self) -> Result<f32, Error> {
        self.to_float("f32").map(|n| n as f32)
    }

    fn read_char(&mut self) -> Result<char, Error> {
        let (k, v) = try!(self.pop_key_val());
        let vstr = v.as_str();
        match vstr.chars().count() {
            1 => Ok(vstr.chars().next().unwrap()),
            _ => derr!("Could not decode '{}' into char for '{}'.", vstr, k),
        }
    }

    fn read_str(&mut self) -> Result<String, Error> {
        self.pop_val().map(|v| v.as_str().to_string())
    }

    fn read_enum<T, F>(&mut self, _: &str, f: F) -> Result<T, Error>
            where F: FnOnce(&mut Decoder) -> Result<T, Error> {
        f(self)
    }

    fn read_enum_variant<T, F>(&mut self, names: &[&str], mut f: F)
                              -> Result<T, Error>
            where F: FnMut(&mut Decoder, usize) -> Result<T, Error> {
        let v = to_lowercase(try!(self.pop_val()).as_str());
        let i =
            match names.iter().map(|&n| to_lowercase(n)).position(|n| n == v) {
                Some(i) => i,
                None => {
                    derr!("Could not match '{}' with any of \
                           the allowed variants: {:?}", v, names)
                }
            };
        f(self, i)
    }

    fn read_enum_variant_arg<T, F>(&mut self, _: usize, _: F)
                                  -> Result<T, Error>
            where F: FnOnce(&mut Decoder) -> Result<T, Error> {
        unimplemented!()
    }

    fn read_enum_struct_variant<T, F>(&mut self, _: &[&str], _: F)
                                     -> Result<T, Error>
            where F: FnMut(&mut Decoder, usize) -> Result<T, Error> {
        unimplemented!()
    }

    fn read_enum_struct_variant_field<T, F>(&mut self, _: &str, _: usize, _: F)
                                           -> Result<T, Error>
            where F: FnOnce(&mut Decoder) -> Result<T, Error> {
        unimplemented!()
    }

    fn read_struct<T, F>(&mut self, _: &str, _: usize, f: F) -> Result<T, Error>
            where F: FnOnce(&mut Decoder) -> Result<T, Error> {
        f(self)
    }

    fn read_struct_field<T, F>(&mut self, f_name: &str, _: usize, f: F)
                              -> Result<T, Error>
            where F: FnOnce(&mut Decoder) -> Result<T, Error> {
        self.push(f_name);
        f(self)
    }

    fn read_tuple<T, F>(&mut self, _: usize, _: F) -> Result<T, Error>
            where F: FnOnce(&mut Decoder) -> Result<T, Error> {
        unimplemented!()
    }

    fn read_tuple_arg<T, F>(&mut self, _: usize, _: F) -> Result<T, Error>
            where F: FnOnce(&mut Decoder) -> Result<T, Error> {
        unimplemented!()
    }

    fn read_tuple_struct<T, F>(&mut self, _: &str, _: usize, _: F)
                              -> Result<T, Error>
            where F: FnOnce(&mut Decoder) -> Result<T, Error> {
        unimplemented!()
    }

    fn read_tuple_struct_arg<T, F>(&mut self, _: usize, _: F)
                                  -> Result<T, Error>
            where F: FnOnce(&mut Decoder) -> Result<T, Error> {
        unimplemented!()
    }

    fn read_option<T, F>(&mut self, mut f: F) -> Result<T, Error>
            where F: FnMut(&mut Decoder, bool) -> Result<T, Error> {
        let option =
            match self.stack.last() {
                None => derr!("Could not decode value into unknown key."),
                Some(it) => it.val.as_ref()
                                  .map(|v| v.as_bool())
                                  .unwrap_or(false),
            };
        f(self, option)
    }

    fn read_seq<T, F>(&mut self, f: F) -> Result<T, Error>
            where F: FnOnce(&mut Decoder, usize) -> Result<T, Error> {
        let it = try!(self.pop());
        let list = it.val.unwrap_or(List(vec!()));
        let vals = list.as_vec();
        for val in vals.iter().rev() {
            self.stack.push(DecoderItem {
                key: it.key.clone(),
                struct_field: it.struct_field.clone(),
                val: Some(Plain(Some(val.to_string()))),
            })
        }
        f(self, vals.len())
    }

    fn read_seq_elt<T, F>(&mut self, _: usize, f: F) -> Result<T, Error>
            where F: FnOnce(&mut Decoder) -> Result<T, Error> {
        f(self)
    }

    fn read_map<T, F>(&mut self, _: F) -> Result<T, Error>
            where F: FnOnce(&mut Decoder, usize) -> Result<T, Error> {
        unimplemented!()
    }

    fn read_map_elt_key<T, F>(&mut self, _: usize, _: F) -> Result<T, Error>
            where F: FnOnce(&mut Decoder) -> Result<T, Error> {
        unimplemented!()
    }

    fn read_map_elt_val<T, F>(&mut self, _: usize, _: F) -> Result<T, Error>
            where F: FnOnce(&mut Decoder) -> Result<T, Error> {
        unimplemented!()
    }
}

fn to_lowercase<S: Into<String>>(s: S) -> String {
    s.into().chars().map(|c| c.to_lowercase().next().unwrap()).collect()
}