1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
use crate::solver::Solver;
/// Implements sudoku solver
///
/// ```
///# use dlx_rs::sudoku::Sudoku;
/// // Define sudoku grid, 0 is unknown number
/// let sudoku = vec![
/// 5, 3, 0, 0, 7, 0, 0, 0, 0,
/// 6, 0, 0, 1, 9, 5, 0, 0, 0,
/// 0, 9, 8, 0, 0, 0, 0, 6, 0,
/// 8, 0, 0, 0, 6, 0, 0, 0, 3,
/// 4, 0, 0, 8, 0, 3, 0, 0, 1,
/// 7, 0, 0, 0, 2, 0, 0, 0, 6,
/// 0, 6, 0, 0, 0, 0, 2, 8, 0,
/// 0, 0, 0, 4, 1, 9, 0, 0, 5,
/// 0, 0, 0, 0, 8, 0, 0, 7, 9,
/// ];
///
/// // Create new sudoku from this grid
/// let mut s = Sudoku::new_from_input(&sudoku);
///
/// let true_solution = vec![
/// 5, 3, 4, 6, 7, 8, 9, 1, 2,
/// 6, 7, 2, 1, 9, 5, 3, 4, 8,
/// 1, 9, 8, 3, 4, 2, 5, 6, 7,
/// 8, 5, 9, 7, 6, 1, 4, 2, 3,
/// 4, 2, 6, 8, 5, 3, 7, 9, 1,
/// 7, 1, 3, 9, 2, 4, 8, 5, 6,
/// 9, 6, 1, 5, 3, 7, 2, 8, 4,
/// 2, 8, 7, 4, 1, 9, 6, 3, 5,
/// 3, 4, 5, 2, 8, 6, 1, 7, 9,
/// ];
/// // Checks only solution is true solution
/// let solution = s.next().unwrap();
/// assert_eq!(solution, true_solution);
/// assert_eq!(s.next(), None);
/// ```
pub struct Sudoku {
pub solver: Solver,
input: Vec<usize>,
n: usize,
}
impl Sudoku {
// Initialises the constraints for an n*n sudoku-grid (regular is n=3, as the grid is 9x9)
// This corresponds to a matrix with dimension (n**6)x(4*n**4)
pub fn new(n: usize) -> Sudoku {
// What are the constraints we need to meet?
// 1. Each cell must contain a number i.e. R1C1 must have precisely one number in it
// 2. Each row must have a 1, each row must have a 2, ...n^2
// 3. Each col must have a 1, each col must have a 2, ...n^2
// 4. Each sub-square must have a 1, each sub-square must have a 2, ...n^2
#[allow(non_snake_case)]
let N = n * n; // Sudoku edge length
//1: N*N constraints
//2: N rows * N numbers
//3: N cols * N numbers
//4: N cols * N numbers
//T: 4 N**2 items
let mut solver = Solver::new(4 * N * N);
// And how many options are there?
// Each cell may contain N options, and there are N*N, so N*N*N options
// e.g. R1C1#1: inserting a 1 into R1, C1
// For standard sudoku: 4*9^2 x 9^3 = 324 x 729
// 1. First constraints run R1C1,R1C2,...,R1CN,R2C1,...,RNCN
// After N^2 of these, we then have
// 2. Row constraint runs R1#1 R1#2 ... R2#1 R2#2
// 3. Col constraint runs C1#1 C1#2 ... C2#1 C2#2
// 4. Sub constraint runs S1#1 S1#2 ... S2#1 S2#2
// Add all of the options
for row in 1..=N {
for col in 1..=N {
for val in 1..=N {
let constraint_name = format!("R{}C{}#{}", row, col, val);
// Now add option
// Runs 1->N*(N-1)+N = N*N
let cell_con = col + (row - 1) * N;
// Runs N*N+1 -> N*N + N*(N-1) + N = 2*N*N
let row_con = N * N + N * (row - 1) + val;
// Runs 2*N*N+1 -> 2*N*N + N*(N-1) + N = 3*N*N
let col_con = 2 * N * N + N * (col - 1) + val;
let sub = (col - 1) / n + n * ((row - 1) / n);
// Runs 3*N*N+1 -> 3*N*N + N*(N-1) + N = 4*N*N
let sub_con = 3 * N * N + N * (sub) + val;
//println!("Adding constraint: {}",constraint_name);
solver.add_option(&constraint_name, &[cell_con, row_con, col_con, sub_con]);
/*
if !(0 < cell_con && cell_con <= N*N) {
panic!("Woops! cell_con = {}, MIN = {}, MAX = {}", cell_con, 0*N*N,1*N*N );
}
if !(N*N < row_con && row_con <= 2*N*N) {
panic!("Woops! row_con = {}, MIN = {}, MAX = {}", row_con, 1*N*N,2*N*N );
}
if !(2*N*N < col_con && col_con <= 3*N*N) {
panic!("Woops! col_con = {}, MIN = {}, MAX = {}", col_con, 2*N*N,3*N*N );
}
if !(3*N*N < sub_con && sub_con <= 4*N*N) {
panic!("Woops! sub_con = {}, MIN = {}, MAX = {}", sub_con, 3*N*N,4*N*N );
}
*/
}
}
}
Sudoku {
solver,
n,
input: vec![],
}
}
/// Initialises an appropriately sized Sudoku with all of the correct constraints, and then selects all of the options corresponding the the non-zero entires in `input`
pub fn new_from_input(input: &[usize]) -> Self {
let inputv = input.to_vec();
let nsq: usize = inputv.len();
let n: usize = (nsq as f64).sqrt().sqrt() as usize;
if nsq != n * n * n * n {
panic!("Input must be an array of length n**4")
}
let mut s = Self::new(n);
s.input = inputv;
for (i, item) in input.iter().enumerate() {
if *item != 0 {
let row = i / (n * n);
let col = i - n * n * row;
let opt_string = format!("R{}C{}#{}", row + 1, col + 1, *item);
// println!("{}",opt_string);
s.solver.select(&opt_string).unwrap();
}
}
s
}
}
impl Iterator for Sudoku {
type Item = Vec<usize>;
/// If a remaining solution exists, returns `Some(v)` where `v` is a `Vec<usize>` containing the flat solve Sudoku grid.
/// Otherwise returns `None`
/// ```
///# use dlx_rs::sudoku::Sudoku;
/// // Define sudoku grid, 0 is unknown number
/// let sudoku = vec![
/// 5, 3, 0, 0, 7, 0, 0, 0, 0,
/// 6, 0, 0, 1, 9, 5, 0, 0, 0,
/// 0, 9, 8, 0, 0, 0, 0, 6, 0,
/// 8, 0, 0, 0, 6, 0, 0, 0, 3,
/// 4, 0, 0, 8, 0, 3, 0, 0, 1,
/// 7, 0, 0, 0, 2, 0, 0, 0, 6,
/// 0, 6, 0, 0, 0, 0, 2, 8, 0,
/// 0, 0, 0, 4, 1, 9, 0, 0, 5,
/// 0, 0, 0, 0, 8, 0, 0, 7, 9,
/// ];
///
/// // Create new sudoku from this grid
/// let mut s = Sudoku::new_from_input(&sudoku);
///
/// let true_solution = vec![
/// 5, 3, 4, 6, 7, 8, 9, 1, 2,
/// 6, 7, 2, 1, 9, 5, 3, 4, 8,
/// 1, 9, 8, 3, 4, 2, 5, 6, 7,
/// 8, 5, 9, 7, 6, 1, 4, 2, 3,
/// 4, 2, 6, 8, 5, 3, 7, 9, 1,
/// 7, 1, 3, 9, 2, 4, 8, 5, 6,
/// 9, 6, 1, 5, 3, 7, 2, 8, 4,
/// 2, 8, 7, 4, 1, 9, 6, 3, 5,
/// 3, 4, 5, 2, 8, 6, 1, 7, 9,
/// ];
/// // Checks solution
/// let solution =s.next();
/// assert_eq!(solution, Some(true_solution));
///
/// let another = s.next();
/// assert_eq!(another, None);
///
/// ```
///
fn next(&mut self) -> Option<Self::Item> {
if let Some(sol) = self.solver.next() {
let mut sudoku_solved = self.input.clone();
for i in sol {
let i = i.as_str();
let s: Vec<&str> = i.split(&['R', 'C', '#']).collect(); //.split('C').split('#');
let r: usize = s[1].parse().unwrap();
let c: usize = s[2].parse().unwrap();
let v: usize = s[3].parse().unwrap();
sudoku_solved[(c - 1) + self.n * self.n * (r - 1)] = v;
}
Some(sudoku_solved)
} else {
None
}
}
}
impl Sudoku {
/// Takes an input sudoku array and produces a pretty printed version
/// ```
///# use dlx_rs::sudoku::Sudoku;
/// let sudoku = vec![
/// 5, 3, 0, 0, 7, 0, 0, 0, 0,
/// 6, 0, 0, 1, 9, 5, 0, 0, 0,
/// 0, 9, 8, 0, 0, 0, 0, 6, 0,
/// 8, 0, 0, 0, 6, 0, 0, 0, 3,
/// 4, 0, 0, 8, 0, 3, 0, 0, 1,
/// 7, 0, 0, 0, 2, 0, 0, 0, 6,
/// 0, 6, 0, 0, 0, 0, 2, 8, 0,
/// 0, 0, 0, 4, 1, 9, 0, 0, 5,
/// 0, 0, 0, 0, 8, 0, 0, 7, 9,
/// ];
/// println!("{}",&Sudoku::pretty(&sudoku));
/// ```
/// produces
/// ```text
/// 5 3 ║ 7 ║
/// 6 ║ 1 9 5 ║
/// 9 8 ║ ║ 6
/// ═══════╬═══════╬═══════
/// 8 ║ 6 ║ 3
/// 4 ║ 8 3 ║ 1
/// 7 ║ 2 ║ 6
/// ═══════╬═══════╬═══════
/// 6 ║ ║ 2 8
/// ║ 4 1 9 ║ 5
/// ║ 8 ║ 7 9
/// ```
///
///
pub fn pretty(sudoku_solved: &[usize]) -> String {
let mut result = String::from("");
let n = (sudoku_solved.len() as f64).sqrt().sqrt() as usize;
#[allow(non_snake_case)]
let N = n * n;
// Print the array in a pretty way
for i in 0..N {
result += " ";
for j in 0..N {
result += &match sudoku_solved[i * N + j] {
0 => String::from(" "),
v => v.to_string(),
};
result += " ";
if (j + 1) % n == 0 && j < N - 1 {
result += "║ ";
}
}
if i < N - 1 {
result += "\n";
}
if (i + 1) % n == 0 && i < N - 1 {
result += &("═".repeat(2 * n + 1));
for _ in 1..n {
result += "╬";
result += &("═".repeat(2 * n + 1));
}
result += "\n";
}
}
result
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn sudoku_solve() {
let sudoku = vec![
5, 3, 0, 0, 7, 0, 0, 0, 0, 6, 0, 0, 1, 9, 5, 0, 0, 0, 0, 9, 8, 0, 0, 0, 0, 6, 0, 8, 0,
0, 0, 6, 0, 0, 0, 3, 4, 0, 0, 8, 0, 3, 0, 0, 1, 7, 0, 0, 0, 2, 0, 0, 0, 6, 0, 6, 0, 0,
0, 0, 2, 8, 0, 0, 0, 0, 4, 1, 9, 0, 0, 5, 0, 0, 0, 0, 8, 0, 0, 7, 9,
];
let mut s = Sudoku::new_from_input(&sudoku);
let true_solution = vec![
5, 3, 4, 6, 7, 8, 9, 1, 2, 6, 7, 2, 1, 9, 5, 3, 4, 8, 1, 9, 8, 3, 4, 2, 5, 6, 7, 8, 5,
9, 7, 6, 1, 4, 2, 3, 4, 2, 6, 8, 5, 3, 7, 9, 1, 7, 1, 3, 9, 2, 4, 8, 5, 6, 9, 6, 1, 5,
3, 7, 2, 8, 4, 2, 8, 7, 4, 1, 9, 6, 3, 5, 3, 4, 5, 2, 8, 6, 1, 7, 9,
];
let sol = s.next().unwrap();
assert_eq!(sol, true_solution);
}
}