1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
//! Crypto primitives necessary for distributed shuffling

use num_bigint_dig::algorithms::mod_inverse;
use num_bigint_dig::prime::probably_prime;
use num_bigint_dig::traits::ModInverse;
use num_bigint_dig::{BigUint, IntoBigInt, IntoBigUint, RandPrime};
use num_integer::Integer;
use rand::prelude::*;
use serde::{Deserialize, Serialize};
use std::borrow::Cow;
use std::convert::{From, TryFrom, TryInto};

#[derive(Clone, Debug, PartialEq)]
pub struct Prime {
    prime: BigUint,
}

/// Type for serialization and sending over the network
#[repr(transparent)]
#[derive(Clone, Debug, PartialEq, Eq, Serialize, Deserialize)]
pub struct UncheckedPrime {
    p: BigUint,
}

impl TryFrom<BigUint> for Prime {
    type Error = String;

    fn try_from(value: BigUint) -> Result<Self, Self::Error> {
        if Prime::is_prime(&value) {
            Ok(Prime { prime: value })
        } else {
            Err("Given number is not a prime".to_owned())
        }
    }
}

impl TryFrom<UncheckedPrime> for Prime {
    type Error = String;

    fn try_from(value: UncheckedPrime) -> Result<Self, Self::Error> {
        value.p.try_into()
    }
}

impl From<Prime> for UncheckedPrime {
    fn from(value: Prime) -> Self {
        UncheckedPrime { p: value.prime }
    }
}

impl Prime {
    fn is_prime(i: &BigUint) -> bool {
        // TODO: better/safer prime checking function? check if it divides first n (~= 40 primes)
        // or https://crates.io/crates/glass_pumpkin
        probably_prime(i, 256)
    }

    pub fn random<Rng: CryptoRng + RngCore>(num_bits: usize, rng: &mut Rng) -> Self {
        Prime {
            prime: rng.gen_prime(num_bits),
        }
    }
}

/// Type for serialization and sending over the network
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
pub struct UncheckedRsa {
    e: BigUint,
    d: BigUint,
}

impl From<Rsa> for UncheckedRsa {
    fn from(value: Rsa) -> Self {
        UncheckedRsa {
            e: value.e,
            d: value.d,
        }
    }
}

impl TryFrom<(UncheckedRsa, &RsaParameter)> for Rsa {
    type Error = String;

    fn try_from(value: (UncheckedRsa, &RsaParameter)) -> Result<Self, Self::Error> {
        let (UncheckedRsa { e, d }, parameter) = value;
        if e == 1u32.into() || e.gcd(&parameter.lambda_n) != 1u32.into() {
            return Err("RSA encryption key not incorrect".to_owned());
        }
        if e.clone().mod_inverse(&parameter.lambda_n) != Some(d.clone().into_bigint().unwrap()) {
            return Err("RSA decryption key incorrect".to_owned());
        }
        Ok(Rsa {
            parameter: parameter.clone(),
            e,
            d,
        })
    }
}

#[derive(Clone, Debug, PartialEq)]
pub struct Rsa {
    parameter: RsaParameter,
    e: BigUint,
    d: BigUint,
}

#[derive(Clone, Debug, PartialEq)]
pub struct RsaParameter {
    n: BigUint,
    lambda_n: BigUint,
}

impl RsaParameter {
    pub fn from_primes(primes: &[Prime]) -> RsaParameter {
        let lambda_n = primes
            .iter()
            .map(|p| &p.prime - &BigUint::from(1u32))
            .fold(1u32.into(), |acc: BigUint, n: BigUint| acc.lcm(&n));
        let n = primes
            .iter()
            .fold(1u32.into(), |acc: BigUint, p| acc * &p.prime);
        RsaParameter { n, lambda_n }
    }
}

impl Rsa {
    /// encrypt given integer
    pub fn encrypt(&self, message: BigUint) -> BigUint {
        message.modpow(&self.e, &self.parameter.n)
    }

    /// decrypt given integer
    pub fn decrypt(&self, message: BigUint) -> BigUint {
        message.modpow(&self.d, &self.parameter.n)
    }

    pub fn gen_with_parameter<Rng: CryptoRng + RngCore>(
        parameter: RsaParameter,
        rng: &mut Rng,
    ) -> Rsa {
        let e = loop {
            let num_bytes = (parameter.lambda_n.bits() + 7) / 8;
            let mut number = vec![0u8; num_bytes as usize];
            rng.fill_bytes(&mut number);
            // ensure that e < lambda_n
            let number = BigUint::from_bytes_le(&number) % &parameter.lambda_n;
            if number.gcd(&parameter.lambda_n) == 1u32.into() {
                break number;
            }
        };
        // inverse exists, since gcd(e, lambda_n) == 1 (therefore e and lambda_n are coprime)
        let d = mod_inverse(Cow::Borrowed(&e), Cow::Borrowed(&parameter.lambda_n)).unwrap();
        Rsa {
            parameter,
            e,
            d: d.into_biguint().unwrap(),
        }
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use std::convert::TryInto;

    #[test]
    fn encrypt_decrypt() {
        let rsa_parameter = RsaParameter {
            n: BigUint::from(3233u32),
            lambda_n: BigUint::from(780u32),
        };
        let key = Rsa {
            parameter: rsa_parameter,
            e: BigUint::from(17u32),
            d: BigUint::from(413u32),
        };
        let m = BigUint::from(65u8);
        let c = key.encrypt(m.clone());
        assert_eq!(c, BigUint::from(2790u32));
        let d = key.decrypt(c);
        assert_eq!(d, m);
    }

    #[test]
    fn generate_keys_1() {
        let mut rng = rand::thread_rng();
        let p = Prime::random(128, &mut rng);
        let rsa_parameter = RsaParameter::from_primes(&[p]);
        let key = Rsa::gen_with_parameter(rsa_parameter, &mut rng);
        let m = BigUint::from_bytes_be(&[65u8, 66, 67, 68]);
        let c = key.encrypt(m.clone());
        let d = key.decrypt(c);
        assert_eq!(d, m);
    }

    #[test]
    fn generate_keys_2() {
        let mut rng = rand::thread_rng();
        let p = Prime::random(128, &mut rng);
        let q = Prime::random(128, &mut rng);
        let rsa_parameter = RsaParameter::from_primes(&[p, q]);
        let key = Rsa::gen_with_parameter(rsa_parameter, &mut rng);
        let m = BigUint::from_bytes_be(&[65u8, 66, 67, 68]);
        let c = key.encrypt(m.clone());
        let d = key.decrypt(c);
        assert_eq!(d, m);
    }

    #[test]
    fn serde() {
        let mut rng = rand::thread_rng();
        let p: UncheckedPrime = Prime::random(128, &mut rng).into();
        let p_str = serde_json::to_string(&p).unwrap();
        assert_eq!(p, serde_json::from_str(&p_str).unwrap())
    }

    #[test]
    fn import() {
        let mut rng = rand::thread_rng();
        let ps = [Prime::random(128, &mut rng), Prime::random(128, &mut rng)];
        let rsa_parameter = RsaParameter::from_primes(&ps);
        let k = Rsa::gen_with_parameter(rsa_parameter.clone(), &mut rng);
        let send_rsa: UncheckedRsa = k.clone().into();
        assert_eq!(Ok(k), (send_rsa, &rsa_parameter).try_into())
    }
}