1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
use super::{
    authentication::{AuthHandler, Authenticate, Keychain, KeychainResult, Verifier},
    Backup, FramedTransport, HeapSecretKey, Reconnectable, Transport,
};
use async_trait::async_trait;
use log::*;
use serde::{Deserialize, Serialize};
use std::io;
use std::ops::{Deref, DerefMut};
use tokio::sync::oneshot;

#[cfg(test)]
use super::InmemoryTransport;

/// Id of the connection
pub type ConnectionId = u32;

/// Represents a connection from either the client or server side
#[derive(Debug)]
pub enum Connection<T> {
    /// Connection from the client side
    Client {
        /// Unique id associated with the connection
        id: ConnectionId,

        /// One-time password (OTP) for use in reauthenticating with the server
        reauth_otp: HeapSecretKey,

        /// Underlying transport used to communicate
        transport: FramedTransport<T>,
    },

    /// Connection from the server side
    Server {
        /// Unique id associated with the connection
        id: ConnectionId,

        /// Used to send the backup into storage when the connection is dropped
        tx: oneshot::Sender<Backup>,

        /// Underlying transport used to communicate
        transport: FramedTransport<T>,
    },
}

impl<T> Deref for Connection<T> {
    type Target = FramedTransport<T>;

    fn deref(&self) -> &Self::Target {
        match self {
            Self::Client { transport, .. } => transport,
            Self::Server { transport, .. } => transport,
        }
    }
}

impl<T> DerefMut for Connection<T> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        match self {
            Self::Client { transport, .. } => transport,
            Self::Server { transport, .. } => transport,
        }
    }
}

impl<T> Drop for Connection<T> {
    /// On drop for a server connection, the connection's backup will be sent via `tx`. For a
    /// client connection, nothing happens.
    fn drop(&mut self) {
        match self {
            Self::Client { .. } => (),
            Self::Server { tx, transport, .. } => {
                // NOTE: We grab the current backup state and store it using the tx, replacing
                //       the backup with a default and the tx with a disconnected one
                let backup = std::mem::take(&mut transport.backup);
                let tx = std::mem::replace(tx, oneshot::channel().0);
                let _ = tx.send(backup);
            }
        }
    }
}

#[async_trait]
impl<T> Reconnectable for Connection<T>
where
    T: Transport,
{
    /// Attempts to re-establish a connection.
    ///
    /// ### Client
    ///
    /// For a client, this means performing an actual [`reconnect`] on the underlying
    /// [`Transport`], re-establishing an encrypted codec, submitting a request to the server to
    /// reauthenticate using a previously-derived OTP, and refreshing the connection id and OTP for
    /// use in a future reauthentication.
    ///
    /// ### Server
    ///
    /// For a server, this will fail as unsupported.
    ///
    /// [`reconnect`]: Reconnectable::reconnect
    async fn reconnect(&mut self) -> io::Result<()> {
        async fn reconnect_client<T: Transport>(
            id: &mut ConnectionId,
            reauth_otp: &mut HeapSecretKey,
            transport: &mut FramedTransport<T>,
        ) -> io::Result<()> {
            // Re-establish a raw connection
            debug!("[Conn {id}] Re-establishing connection");
            Reconnectable::reconnect(transport).await?;

            // Perform a handshake to ensure that the connection is properly established and encrypted
            debug!("[Conn {id}] Performing handshake");
            transport.client_handshake().await?;

            // Communicate that we are an existing connection
            debug!("[Conn {id}] Performing re-authentication");
            transport
                .write_frame_for(&ConnectType::Reconnect {
                    id: *id,
                    otp: reauth_otp.unprotected_as_bytes().to_vec(),
                })
                .await?;

            // Receive the new id for the connection
            // NOTE: If we fail re-authentication above,
            //       this will fail as the connection is dropped
            debug!("[Conn {id}] Receiving new connection id");
            let new_id = transport
                .read_frame_as::<ConnectionId>()
                .await?
                .ok_or_else(|| {
                    io::Error::new(io::ErrorKind::Other, "Missing connection id frame")
                })?;
            debug!("[Conn {id}] Resetting id to {new_id}");
            *id = new_id;

            // Derive an OTP for reauthentication
            debug!("[Conn {id}] Deriving future OTP for reauthentication");
            *reauth_otp = transport.exchange_keys().await?.into_heap_secret_key();

            Ok(())
        }

        match self {
            Self::Client {
                id,
                transport,
                reauth_otp,
            } => {
                // Freeze our backup as we don't want the connection logic to alter it
                transport.backup.freeze();

                // Attempt to perform the reconnection and unfreeze our backup regardless of the
                // result
                let result = reconnect_client(id, reauth_otp, transport).await;
                transport.backup.unfreeze();
                result?;

                // Perform synchronization
                debug!("[Conn {id}] Synchronizing frame state");
                transport.synchronize().await?;

                Ok(())
            }

            Self::Server { .. } => Err(io::Error::new(
                io::ErrorKind::Unsupported,
                "Server connection cannot reconnect",
            )),
        }
    }
}

/// Type of connection to perform
#[derive(Debug, Serialize, Deserialize)]
enum ConnectType {
    /// Indicates that the connection from client to server is no and not a reconnection
    Connect,

    /// Indicates that the connection from client to server is a reconnection and should attempt to
    /// use the connection id and OTP to authenticate
    Reconnect {
        /// Id of the connection to reauthenticate
        id: ConnectionId,

        /// Raw bytes of the OTP
        #[serde(with = "serde_bytes")]
        otp: Vec<u8>,
    },
}

impl<T> Connection<T>
where
    T: Transport,
{
    /// Transforms a raw [`Transport`] into an established [`Connection`] from the client-side by
    /// performing the following:
    ///
    /// 1. Handshakes to derive the appropriate [`Codec`](crate::Codec) to use
    /// 2. Authenticates the established connection to ensure it is valid
    /// 3. Restores pre-existing state using the provided backup, replaying any missing frames and
    ///    receiving any frames from the other side
    pub async fn client<H: AuthHandler + Send>(transport: T, handler: H) -> io::Result<Self> {
        let id: ConnectionId = rand::random();

        // Perform a handshake to ensure that the connection is properly established and encrypted
        debug!("[Conn {id}] Performing handshake");
        let mut transport: FramedTransport<T> =
            FramedTransport::from_client_handshake(transport).await?;

        // Communicate that we are a new connection
        debug!("[Conn {id}] Communicating that this is a new connection");
        transport.write_frame_for(&ConnectType::Connect).await?;

        // Receive the new id for the connection
        let id = {
            debug!("[Conn {id}] Receiving new connection id");
            let new_id = transport
                .read_frame_as::<ConnectionId>()
                .await?
                .ok_or_else(|| {
                    io::Error::new(io::ErrorKind::Other, "Missing connection id frame")
                })?;
            debug!("[Conn {id}] Resetting id to {new_id}");
            new_id
        };

        // Authenticate the transport with the server-side
        debug!("[Conn {id}] Performing authentication");
        transport.authenticate(handler).await?;

        // Derive an OTP for reauthentication
        debug!("[Conn {id}] Deriving future OTP for reauthentication");
        let reauth_otp = transport.exchange_keys().await?.into_heap_secret_key();

        Ok(Self::Client {
            id,
            reauth_otp,
            transport,
        })
    }

    /// Transforms a raw [`Transport`] into an established [`Connection`] from the server-side by
    /// performing the following:
    ///
    /// 1. Handshakes to derive the appropriate [`Codec`](crate::Codec) to use
    /// 2. Authenticates the established connection to ensure it is valid by either using the
    ///    given `verifier` or, if working with an existing client connection, will validate an OTP
    ///    from our database
    /// 3. Restores pre-existing state using the provided backup, replaying any missing frames and
    ///    receiving any frames from the other side
    pub async fn server(
        transport: T,
        verifier: &Verifier,
        keychain: Keychain<oneshot::Receiver<Backup>>,
    ) -> io::Result<Self> {
        let id: ConnectionId = rand::random();

        // Perform a handshake to ensure that the connection is properly established and encrypted
        debug!("[Conn {id}] Performing handshake");
        let mut transport: FramedTransport<T> =
            FramedTransport::from_server_handshake(transport).await?;

        // Receive a client id, look up to see if the client id exists already
        //
        // 1. If it already exists, wait for a password to follow, which is a one-time password used by
        //    the client. If the password is correct, then generate a new one-time client id and
        //    password for a future connection (only updating if the connection fully completes) and
        //    send it to the client, and then perform a replay situation
        //
        // 2. If it does not exist, ignore the client id and password. Generate a new client id to send
        //    to the client. Perform verification like usual. Then generate a one-time password and
        //    send it to the client.
        debug!("[Conn {id}] Waiting for connection type");
        let connection_type = transport
            .read_frame_as::<ConnectType>()
            .await?
            .ok_or_else(|| io::Error::new(io::ErrorKind::Other, "Missing connection type frame"))?;

        // Create a oneshot channel used to relay the backup when the connection is dropped
        let (tx, rx) = oneshot::channel();

        // Based on the connection type, we either try to find and validate an existing connection
        // or we perform normal verification
        match connection_type {
            ConnectType::Connect => {
                // Communicate the connection id
                debug!("[Conn {id}] Telling other side to change connection id");
                transport.write_frame_for(&id).await?;

                // Perform authentication to ensure the connection is valid
                debug!("[Conn {id}] Verifying connection");
                verifier.verify(&mut transport).await?;

                // Derive an OTP for reauthentication
                debug!("[Conn {id}] Deriving future OTP for reauthentication");
                let reauth_otp = transport.exchange_keys().await?.into_heap_secret_key();

                // Store the id, OTP, and backup retrieval in our database
                keychain.insert(id.to_string(), reauth_otp, rx).await;
            }
            ConnectType::Reconnect { id: other_id, otp } => {
                let reauth_otp = HeapSecretKey::from(otp);

                debug!("[Conn {id}] Checking if {other_id} exists and has matching OTP");
                match keychain
                    .remove_if_has_key(other_id.to_string(), reauth_otp)
                    .await
                {
                    KeychainResult::Ok(x) => {
                        // Communicate the connection id
                        debug!("[Conn {id}] Telling other side to change connection id");
                        transport.write_frame_for(&id).await?;

                        // Derive an OTP for reauthentication
                        debug!("[Conn {id}] Deriving future OTP for reauthentication");
                        let reauth_otp = transport.exchange_keys().await?.into_heap_secret_key();

                        // Grab the old backup and swap it into our transport
                        debug!("[Conn {id}] Acquiring backup for existing connection");
                        match x.await {
                            Ok(backup) => {
                                transport.backup = backup;
                            }
                            Err(_) => {
                                warn!("[Conn {id}] Missing backup");
                            }
                        }

                        // Synchronize using the provided backup
                        debug!("[Conn {id}] Synchronizing frame state");
                        transport.synchronize().await?;

                        // Store the id, OTP, and backup retrieval in our database
                        keychain.insert(id.to_string(), reauth_otp, rx).await;
                    }
                    KeychainResult::InvalidPassword => {
                        return Err(io::Error::new(
                            io::ErrorKind::PermissionDenied,
                            "Invalid OTP for reconnect",
                        ));
                    }
                    KeychainResult::InvalidId => {
                        return Err(io::Error::new(
                            io::ErrorKind::PermissionDenied,
                            "Invalid id for reconnect",
                        ));
                    }
                }
            }
        }

        Ok(Self::Server { id, tx, transport })
    }
}

#[cfg(test)]
impl Connection<InmemoryTransport> {
    /// Establishes a pair of [`Connection`]s using [`InmemoryTransport`] underneath, returning
    /// them in the form (client, server).
    ///
    /// ### Note
    ///
    /// This skips handshakes, authentication, and backup processing. These connections cannot be
    /// reconnected and have no encryption.
    pub fn pair(buffer: usize) -> (Self, Self) {
        let id = rand::random::<ConnectionId>();
        let (t1, t2) = FramedTransport::pair(buffer);

        let client = Connection::Client {
            id,
            reauth_otp: HeapSecretKey::generate(32).unwrap(),
            transport: t1,
        };

        let server = Connection::Server {
            id,
            tx: oneshot::channel().0,
            transport: t2,
        };

        (client, server)
    }
}

#[cfg(test)]
impl<T> Connection<T> {
    /// Returns the id of the connection.
    pub fn id(&self) -> ConnectionId {
        match self {
            Self::Client { id, .. } => *id,
            Self::Server { id, .. } => *id,
        }
    }

    /// Returns the OTP associated with the connection, or none if connection is server-side.
    pub fn otp(&self) -> Option<&HeapSecretKey> {
        match self {
            Self::Client { reauth_otp, .. } => Some(reauth_otp),
            Self::Server { .. } => None,
        }
    }

    /// Returns a reference to the underlying transport.
    pub fn transport(&self) -> &FramedTransport<T> {
        match self {
            Self::Client { transport, .. } => transport,
            Self::Server { transport, .. } => transport,
        }
    }

    /// Returns a mutable reference to the underlying transport.
    pub fn mut_transport(&mut self) -> &mut FramedTransport<T> {
        match self {
            Self::Client { transport, .. } => transport,
            Self::Server { transport, .. } => transport,
        }
    }
}

#[cfg(test)]
impl<T: Transport> Connection<T> {
    pub fn test_client(transport: T) -> Self {
        Self::Client {
            id: rand::random(),
            reauth_otp: HeapSecretKey::generate(32).unwrap(),
            transport: FramedTransport::plain(transport),
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::common::{
        authentication::{msg::Challenge, Authenticator, DummyAuthHandler},
        Frame,
    };
    use std::sync::Arc;
    use test_log::test;

    #[test(tokio::test)]
    async fn client_should_fail_if_codec_handshake_fails() {
        let (mut t1, t2) = FramedTransport::pair(100);

        // Spawn a task to perform the client connection so we don't deadlock while simulating the
        // server actions on the other side
        let task = tokio::spawn(async move {
            Connection::client(t2.into_inner(), DummyAuthHandler)
                .await
                .unwrap()
        });

        // Send garbage to fail the handshake
        t1.write_frame(Frame::new(b"invalid")).await.unwrap();

        // Client should fail
        task.await.unwrap_err();
    }

    #[test(tokio::test)]
    async fn client_should_fail_if_unable_to_receive_connection_id_from_server() {
        let (mut t1, t2) = FramedTransport::pair(100);

        // Spawn a task to perform the client connection so we don't deadlock while simulating the
        // server actions on the other side
        let task = tokio::spawn(async move {
            Connection::client(t2.into_inner(), DummyAuthHandler)
                .await
                .unwrap()
        });

        // Perform first step of connection by establishing the codec
        t1.server_handshake().await.unwrap();

        // Receive a type that indicates a new connection
        let ct = t1.read_frame_as::<ConnectType>().await.unwrap().unwrap();
        assert!(
            matches!(ct, ConnectType::Connect),
            "Unexpected connect type: {ct:?}"
        );

        // Drop to cause id retrieval on client to fail
        drop(t1);

        // Client should fail
        task.await.unwrap_err();
    }

    #[test(tokio::test)]
    async fn client_should_fail_if_authentication_fails() {
        let (mut t1, t2) = FramedTransport::pair(100);

        // Spawn a task to perform the client connection so we don't deadlock while simulating the
        // server actions on the other side
        let task = tokio::spawn(async move {
            Connection::client(t2.into_inner(), DummyAuthHandler)
                .await
                .unwrap()
        });

        // Perform first step of connection by establishing the codec
        t1.server_handshake().await.unwrap();

        // Receive a type that indicates a new connection
        let ct = t1.read_frame_as::<ConnectType>().await.unwrap().unwrap();
        assert!(
            matches!(ct, ConnectType::Connect),
            "Unexpected connect type: {ct:?}"
        );

        // Send a connection id as second step of connection
        t1.write_frame_for(&rand::random::<ConnectionId>())
            .await
            .unwrap();

        // Perform an authentication request that will fail on the client side, which will
        // cause the client to drop and therefore this transport to fail in getting a response
        t1.challenge(Challenge {
            questions: Vec::new(),
            options: Default::default(),
        })
        .await
        .unwrap_err();

        // Client should fail
        task.await.unwrap_err();
    }

    #[test(tokio::test)]
    async fn client_should_fail_if_unable_to_exchange_otp_for_reauthentication() {
        let (mut t1, t2) = FramedTransport::pair(100);

        // Spawn a task to perform the client connection so we don't deadlock while simulating the
        // server actions on the other side
        let task = tokio::spawn(async move {
            Connection::client(t2.into_inner(), DummyAuthHandler)
                .await
                .unwrap()
        });

        // Perform first step of connection by establishing the codec
        t1.server_handshake().await.unwrap();

        // Receive a type that indicates a new connection
        let ct = t1.read_frame_as::<ConnectType>().await.unwrap().unwrap();
        assert!(
            matches!(ct, ConnectType::Connect),
            "Unexpected connect type: {ct:?}"
        );

        // Send a connection id as second step of connection
        t1.write_frame_for(&rand::random::<ConnectionId>())
            .await
            .unwrap();

        // Perform verification as third step using none method, which should always succeed
        // without challenging
        Verifier::none().verify(&mut t1).await.unwrap();

        // Send garbage to fail the key exchange
        t1.write_frame(Frame::new(b"invalid")).await.unwrap();

        // Client should fail
        task.await.unwrap_err();
    }

    #[test(tokio::test)]
    async fn client_should_succeed_if_establishes_connection_with_server() {
        let (mut t1, t2) = FramedTransport::pair(100);

        // Spawn a task to perform the client connection so we don't deadlock while simulating the
        // server actions on the other side
        let task = tokio::spawn(async move {
            Connection::client(t2.into_inner(), DummyAuthHandler)
                .await
                .unwrap()
        });

        // Perform first step of connection by establishing the codec
        t1.server_handshake().await.unwrap();

        // Receive a type that indicates a new connection
        let ct = t1.read_frame_as::<ConnectType>().await.unwrap().unwrap();
        assert!(
            matches!(ct, ConnectType::Connect),
            "Unexpected connect type: {ct:?}"
        );

        // Send a connection id as second step of connection
        t1.write_frame_for(&rand::random::<ConnectionId>())
            .await
            .unwrap();

        // Perform verification as third step using none method, which should always succeed
        // without challenging
        Verifier::none().verify(&mut t1).await.unwrap();

        // Perform fourth step of key exchange for OTP
        let otp = t1.exchange_keys().await.unwrap().into_heap_secret_key();

        // Client should succeed and have an OTP that matches the server-side version
        let client = task.await.unwrap();
        assert_eq!(client.otp(), Some(&otp));
    }

    #[test(tokio::test)]
    async fn server_should_fail_if_codec_handshake_fails() {
        let (mut t1, t2) = FramedTransport::pair(100);
        let verifier = Verifier::none();
        let keychain = Keychain::new();

        // Spawn a task to perform the server connection so we don't deadlock while simulating the
        // client actions on the other side
        let task = tokio::spawn(async move {
            Connection::server(t2.into_inner(), &verifier, keychain)
                .await
                .unwrap()
        });

        // Send garbage to fail the handshake
        t1.write_frame(Frame::new(b"invalid")).await.unwrap();

        // Server should fail
        task.await.unwrap_err();
    }

    #[test(tokio::test)]
    async fn server_should_fail_if_unable_to_receive_connect_type() {
        let (mut t1, t2) = FramedTransport::pair(100);
        let verifier = Verifier::none();
        let keychain = Keychain::new();

        // Spawn a task to perform the server connection so we don't deadlock while simulating the
        // client actions on the other side
        let task = tokio::spawn(async move {
            Connection::server(t2.into_inner(), &verifier, keychain)
                .await
                .unwrap()
        });

        // Perform first step of completing client-side of handshake
        t1.client_handshake().await.unwrap();

        // Send some garbage that is not the connection type
        t1.write_frame(Frame::new(b"hello")).await.unwrap();

        // Server should fail
        task.await.unwrap_err();
    }

    #[test(tokio::test)]
    async fn server_should_fail_if_unable_to_verify_new_client() {
        let (mut t1, t2) = FramedTransport::pair(100);
        let verifier = Verifier::static_key(HeapSecretKey::generate(32).unwrap());
        let keychain = Keychain::new();

        // Spawn a task to perform the server connection so we don't deadlock while simulating the
        // client actions on the other side
        let task = tokio::spawn(async move {
            Connection::server(t2.into_inner(), &verifier, keychain)
                .await
                .unwrap()
        });

        // Perform first step of completing client-side of handshake
        t1.client_handshake().await.unwrap();

        // Send type to indicate a new connection
        t1.write_frame_for(&ConnectType::Connect).await.unwrap();

        // Receive the connection id
        let _id = t1.read_frame_as::<ConnectionId>().await.unwrap().unwrap();

        // Fail verification using the dummy handler that will fail when asked for a static key
        t1.authenticate(DummyAuthHandler).await.unwrap_err();

        // Drop the transport so we kill the server-side connection
        // NOTE: If we don't drop here, the above authentication failure won't kill the server
        drop(t1);

        // Server should fail
        task.await.unwrap_err();
    }

    #[test(tokio::test)]
    async fn server_should_fail_if_unable_to_exchange_otp_for_reauthentication_with_new_client() {
        let (mut t1, t2) = FramedTransport::pair(100);
        let verifier = Verifier::none();
        let keychain = Keychain::new();

        // Spawn a task to perform the server connection so we don't deadlock while simulating the
        // client actions on the other side
        let task = tokio::spawn(async move {
            Connection::server(t2.into_inner(), &verifier, keychain)
                .await
                .unwrap()
        });

        // Perform first step of completing client-side of handshake
        t1.client_handshake().await.unwrap();

        // Send type to indicate a new connection
        t1.write_frame_for(&ConnectType::Connect).await.unwrap();

        // Receive the connection id
        let _id = t1.read_frame_as::<ConnectionId>().await.unwrap().unwrap();

        // Pass verification using the dummy handler since our verifier supports no authentication
        t1.authenticate(DummyAuthHandler).await.unwrap();

        // Send some garbage to fail the exchange
        t1.write_frame(Frame::new(b"hello")).await.unwrap();

        // Server should fail
        task.await.unwrap_err();
    }

    #[test(tokio::test)]
    async fn server_should_fail_if_existing_client_id_is_invalid() {
        let (mut t1, t2) = FramedTransport::pair(100);
        let verifier = Verifier::none();
        let keychain = Keychain::new();

        // Spawn a task to perform the server connection so we don't deadlock while simulating the
        // client actions on the other side
        let task = tokio::spawn(async move {
            Connection::server(t2.into_inner(), &verifier, keychain)
                .await
                .unwrap()
        });

        // Perform first step of completing client-side of handshake
        t1.client_handshake().await.unwrap();

        // Send type to indicate an existing connection, which should cause the server-side to fail
        // because there is no matching id
        t1.write_frame_for(&ConnectType::Reconnect {
            id: 1234,
            otp: HeapSecretKey::generate(32)
                .unwrap()
                .unprotected_into_bytes(),
        })
        .await
        .unwrap();

        // Server should fail
        task.await.unwrap_err();
    }

    #[test(tokio::test)]
    async fn server_should_fail_if_existing_client_otp_is_invalid() {
        let (mut t1, t2) = FramedTransport::pair(100);
        let verifier = Verifier::none();
        let keychain = Keychain::new();

        keychain
            .insert(
                1234.to_string(),
                HeapSecretKey::generate(32).unwrap(),
                oneshot::channel().1,
            )
            .await;

        // Spawn a task to perform the server connection so we don't deadlock while simulating the
        // client actions on the other side
        let task = tokio::spawn(async move {
            Connection::server(t2.into_inner(), &verifier, keychain)
                .await
                .unwrap()
        });

        // Perform first step of completing client-side of handshake
        t1.client_handshake().await.unwrap();

        // Send type to indicate an existing connection, which should cause the server-side to fail
        // because the OTP is wrong for the given id
        t1.write_frame_for(&ConnectType::Reconnect {
            id: 1234,
            otp: HeapSecretKey::generate(32)
                .unwrap()
                .unprotected_into_bytes(),
        })
        .await
        .unwrap();

        // Server should fail
        task.await.unwrap_err();
    }

    #[test(tokio::test)]
    async fn server_should_fail_if_unable_to_exchange_otp_for_reauthentication_with_existing_client(
    ) {
        let (mut t1, t2) = FramedTransport::pair(100);
        let verifier = Verifier::none();
        let keychain = Keychain::new();
        let key = HeapSecretKey::generate(32).unwrap();

        keychain
            .insert(1234.to_string(), key.clone(), oneshot::channel().1)
            .await;

        // Spawn a task to perform the server connection so we don't deadlock while simulating the
        // client actions on the other side
        let task = tokio::spawn(async move {
            Connection::server(t2.into_inner(), &verifier, keychain)
                .await
                .unwrap()
        });

        // Perform first step of completing client-side of handshake
        t1.client_handshake().await.unwrap();

        // Send type to indicate an existing connection, which should cause the server-side to fail
        // because the OTP is wrong for the given id
        t1.write_frame_for(&ConnectType::Reconnect {
            id: 1234,
            otp: key.unprotected_into_bytes(),
        })
        .await
        .unwrap();

        // Receive a new client id
        let _id = t1.read_frame_as::<ConnectionId>().await.unwrap().unwrap();

        // Send garbage to fail the otp exchange
        t1.write_frame(Frame::new(b"hello")).await.unwrap();

        // Server should fail
        task.await.unwrap_err();
    }

    #[test(tokio::test)]
    async fn server_should_fail_if_unable_to_synchronize_with_existing_client() {
        let (mut t1, t2) = FramedTransport::pair(100);
        let verifier = Verifier::none();
        let keychain = Keychain::new();
        let key = HeapSecretKey::generate(32).unwrap();

        keychain
            .insert(1234.to_string(), key.clone(), oneshot::channel().1)
            .await;

        // Spawn a task to perform the server connection so we don't deadlock while simulating the
        // client actions on the other side
        let task = tokio::spawn(async move {
            Connection::server(t2.into_inner(), &verifier, keychain)
                .await
                .unwrap()
        });

        // Perform first step of completing client-side of handshake
        t1.client_handshake().await.unwrap();

        // Send type to indicate an existing connection, which should cause the server-side to fail
        // because the OTP is wrong for the given id
        t1.write_frame_for(&ConnectType::Reconnect {
            id: 1234,
            otp: key.unprotected_into_bytes(),
        })
        .await
        .unwrap();

        // Receive a new client id
        let _id = t1.read_frame_as::<ConnectionId>().await.unwrap().unwrap();

        // Perform otp exchange
        let _otp = t1.exchange_keys().await.unwrap();

        // Send garbage to fail synchronization
        t1.write_frame(b"hello").await.unwrap();

        // Server should fail
        task.await.unwrap_err();
    }

    #[test(tokio::test)]
    async fn server_should_succeed_if_establishes_connection_with_new_client() {
        let (mut t1, t2) = FramedTransport::pair(100);
        let verifier = Verifier::none();
        let keychain = Keychain::new();

        // Spawn a task to perform the server connection so we don't deadlock while simulating the
        // client actions on the other side
        let task = tokio::spawn({
            let keychain = keychain.clone();
            async move {
                Connection::server(t2.into_inner(), &verifier, keychain)
                    .await
                    .unwrap()
            }
        });

        // Perform first step of completing client-side of handshake
        t1.client_handshake().await.unwrap();

        // Send type to indicate a new connection
        t1.write_frame_for(&ConnectType::Connect).await.unwrap();

        // Receive the connection id
        let id = t1.read_frame_as::<ConnectionId>().await.unwrap().unwrap();

        // Pass verification using the dummy handler since our verifier supports no authentication
        t1.authenticate(DummyAuthHandler).await.unwrap();

        // Perform otp exchange
        let otp = t1.exchange_keys().await.unwrap();

        // Server connection should be established, and have received some replayed frames
        let server = task.await.unwrap();

        // Validate the connection ids match
        assert_eq!(server.id(), id);

        // Validate the OTP was stored in our keychain
        assert!(
            keychain
                .has_key(id.to_string(), otp.into_heap_secret_key())
                .await,
            "Missing OTP"
        );
    }

    #[test(tokio::test)]
    async fn server_should_succeed_if_establishes_connection_with_existing_client() {
        let (mut t1, t2) = FramedTransport::pair(100);
        let verifier = Verifier::none();
        let keychain = Keychain::new();
        let key = HeapSecretKey::generate(32).unwrap();

        keychain
            .insert(1234.to_string(), key.clone(), {
                // Create a custom backup we'll use to replay frames from the server-side
                let mut backup = Backup::new();

                backup.push_frame(Frame::new(b"hello"));
                backup.push_frame(Frame::new(b"world"));
                backup.increment_sent_cnt();
                backup.increment_sent_cnt();

                let (tx, rx) = oneshot::channel();
                tx.send(backup).unwrap();
                rx
            })
            .await;

        // Spawn a task to perform the server connection so we don't deadlock while simulating the
        // client actions on the other side
        let task = tokio::spawn({
            let keychain = keychain.clone();
            async move {
                Connection::server(t2.into_inner(), &verifier, keychain)
                    .await
                    .unwrap()
            }
        });

        // Perform first step of completing client-side of handshake
        t1.client_handshake().await.unwrap();

        // Send type to indicate an existing connection, which should cause the server-side to fail
        // because the OTP is wrong for the given id
        t1.write_frame_for(&ConnectType::Reconnect {
            id: 1234,
            otp: key.unprotected_into_bytes(),
        })
        .await
        .unwrap();

        // Receive a new client id
        let id = t1.read_frame_as::<ConnectionId>().await.unwrap().unwrap();

        // Perform otp exchange
        let otp = t1.exchange_keys().await.unwrap();

        // Queue up some frames to send to the server
        t1.backup.clear();
        t1.backup.push_frame(Frame::new(b"foo"));
        t1.backup.push_frame(Frame::new(b"bar"));
        t1.backup.increment_sent_cnt();
        t1.backup.increment_sent_cnt();

        // Perform synchronization
        t1.synchronize().await.unwrap();

        // Verify that we received frames from the server
        assert_eq!(t1.read_frame().await.unwrap().unwrap(), b"hello");
        assert_eq!(t1.read_frame().await.unwrap().unwrap(), b"world");

        // Server connection should be established, and have received some replayed frames
        let mut server = task.await.unwrap();
        assert_eq!(server.read_frame().await.unwrap().unwrap(), b"foo");
        assert_eq!(server.read_frame().await.unwrap().unwrap(), b"bar");

        // Validate the connection ids match
        assert_eq!(server.id(), id);

        // Check that our old connection id is no longer contained in the keychain
        assert!(!keychain.has_id("1234").await, "Old OTP still exists");

        // Validate the OTP was stored in our keychain
        assert!(
            keychain
                .has_key(id.to_string(), otp.into_heap_secret_key())
                .await,
            "Missing OTP"
        );
    }

    #[test(tokio::test)]
    async fn client_server_new_connection_e2e_should_establish_connection() {
        let (t1, t2) = InmemoryTransport::pair(100);
        let verifier = Verifier::none();
        let keychain = Keychain::new();

        // Spawn a task to perform the server connection so we don't deadlock
        let task = tokio::spawn(async move {
            Connection::server(t2, &verifier, keychain)
                .await
                .expect("Failed to connect from server")
        });

        // Perform the client-side of the connection
        let mut client = Connection::client(t1, DummyAuthHandler)
            .await
            .expect("Failed to connect from client");
        let mut server = task.await.unwrap();

        // Test out the connection
        client.write_frame(Frame::new(b"hello")).await.unwrap();
        assert_eq!(server.read_frame().await.unwrap().unwrap(), b"hello");
        server.write_frame(Frame::new(b"goodbye")).await.unwrap();
        assert_eq!(client.read_frame().await.unwrap().unwrap(), b"goodbye");
    }

    /// Helper utility to set up for a client reconnection
    async fn setup_reconnect_scenario() -> (
        Connection<InmemoryTransport>,
        InmemoryTransport,
        Arc<Verifier>,
        Keychain<oneshot::Receiver<Backup>>,
    ) {
        let (t1, t2) = InmemoryTransport::pair(100);
        let verifier = Arc::new(Verifier::none());
        let keychain = Keychain::new();

        // Spawn a task to perform the server connection so we don't deadlock
        let task = {
            let verifier = Arc::clone(&verifier);
            let keychain = keychain.clone();
            tokio::spawn(async move {
                Connection::server(t2, &verifier, keychain)
                    .await
                    .expect("Failed to connect from server")
            })
        };

        // Perform the client-side of the connection
        let mut client = Connection::client(t1, DummyAuthHandler)
            .await
            .expect("Failed to connect from client");

        // Ensure the server is established and then drop it
        let server = task.await.unwrap();
        drop(server);

        // Create a new inmemory transport and link it to the client
        let mut t2 = InmemoryTransport::pair(100).0;
        t2.link(client.mut_transport().as_mut_inner(), 100);

        (client, t2, verifier, keychain)
    }

    #[test(tokio::test)]
    async fn reconnect_should_fail_if_client_side_connection_handshake_fails() {
        let (mut client, transport, _verifier, _keychain) = setup_reconnect_scenario().await;
        let mut transport = FramedTransport::plain(transport);

        // Spawn a task to perform the client reconnection so we don't deadlock
        let task = tokio::spawn(async move { client.reconnect().await.unwrap() });

        // Send garbage to fail handshake from server-side
        transport.write_frame(b"hello").await.unwrap();

        // Client should fail
        task.await.unwrap_err();
    }

    #[test(tokio::test)]
    async fn reconnect_should_fail_if_client_side_connection_unable_to_receive_new_connection_id() {
        let (mut client, transport, _verifier, _keychain) = setup_reconnect_scenario().await;
        let mut transport = FramedTransport::plain(transport);

        // Spawn a task to perform the client reconnection so we don't deadlock
        let task = tokio::spawn(async move { client.reconnect().await.unwrap() });

        // Perform first step of completing server-side of handshake
        transport.server_handshake().await.unwrap();

        // Drop transport to cause client to fail in not receiving connection id
        drop(transport);

        // Client should fail
        task.await.unwrap_err();
    }

    #[test(tokio::test)]
    async fn reconnect_should_fail_if_client_side_connection_unable_to_exchange_otp_with_server() {
        let (mut client, transport, _verifier, keychain) = setup_reconnect_scenario().await;
        let mut transport = FramedTransport::plain(transport);

        // Spawn a task to perform the client reconnection so we don't deadlock
        let task = tokio::spawn(async move { client.reconnect().await.unwrap() });

        // Perform first step of completing server-side of handshake
        transport.server_handshake().await.unwrap();

        // Receive reconnect data from client-side
        let (id, otp) = match transport.read_frame_as::<ConnectType>().await {
            Ok(Some(ConnectType::Reconnect { id, otp })) => (id, HeapSecretKey::from(otp)),
            x => panic!("Unexpected result: {x:?}"),
        };

        // Verify the id and OTP matches the one stored into our keychain from the setup
        assert!(
            keychain.has_key(id.to_string(), otp).await,
            "Wrong id or OTP"
        );

        // Send a new id back to the client connection
        transport
            .write_frame_for(&rand::random::<ConnectionId>())
            .await
            .unwrap();

        // Send garbage to fail the key exchange for new OTP
        transport.write_frame(Frame::new(b"hello")).await.unwrap();

        // Client should fail
        task.await.unwrap_err();
    }

    #[test(tokio::test)]
    async fn reconnect_should_fail_if_client_side_connection_unable_to_synchronize_with_server() {
        let (mut client, transport, _verifier, keychain) = setup_reconnect_scenario().await;
        let mut transport = FramedTransport::plain(transport);

        // Spawn a task to perform the client reconnection so we don't deadlock
        let task = tokio::spawn(async move { client.reconnect().await.unwrap() });

        // Perform first step of completing server-side of handshake
        transport.server_handshake().await.unwrap();

        // Receive reconnect data from client-side
        let (id, otp) = match transport.read_frame_as::<ConnectType>().await {
            Ok(Some(ConnectType::Reconnect { id, otp })) => (id, HeapSecretKey::from(otp)),
            x => panic!("Unexpected result: {x:?}"),
        };

        // Verify the id and OTP matches the one stored into our keychain from the setup
        assert!(
            keychain.has_key(id.to_string(), otp).await,
            "Wrong id or OTP"
        );

        // Send a new id back to the client connection
        transport
            .write_frame_for(&rand::random::<ConnectionId>())
            .await
            .unwrap();

        // Send garbage to fail the key exchange for new OTP
        transport.write_frame(Frame::new(b"hello")).await.unwrap();

        // Client should fail
        task.await.unwrap_err();
    }

    #[test(tokio::test)]
    async fn reconnect_should_succeed_if_client_side_connection_fully_connects_and_synchronizes_with_server(
    ) {
        let (mut client, transport, _verifier, keychain) = setup_reconnect_scenario().await;
        let mut transport = FramedTransport::plain(transport);

        // Copy client backup for verification later
        let client_backup = client.transport().backup.clone();

        // Spawn a task to perform the client reconnection so we don't deadlock
        let task = tokio::spawn(async move {
            client.reconnect().await.unwrap();
            client
        });

        // Perform first step of completing server-side of handshake
        transport.server_handshake().await.unwrap();

        // Receive reconnect data from client-side
        let (id, otp) = match transport.read_frame_as::<ConnectType>().await {
            Ok(Some(ConnectType::Reconnect { id, otp })) => (id, HeapSecretKey::from(otp)),
            x => panic!("Unexpected result: {x:?}"),
        };

        // Retrieve server backup
        let backup = keychain
            .remove_if_has_key(id.to_string(), otp)
            .await
            .into_ok()
            .expect("Invalid id or OTP")
            .await
            .expect("Failed to retrieve backup");

        // Send a new id back to the client connection
        transport
            .write_frame_for(&rand::random::<ConnectionId>())
            .await
            .unwrap();

        // Perform key exchange
        let otp = transport.exchange_keys().await.unwrap();

        // Perform synchronization after restoring backup
        transport.backup = backup;
        transport.synchronize().await.unwrap();

        // Client should succeed
        let mut client = task.await.unwrap();
        assert_eq!(client.otp(), Some(&otp.into_heap_secret_key()));

        // Verify client backup sent/received count was not modified (stored frames may be
        // truncated, though)
        assert_eq!(
            client.transport().backup.sent_cnt(),
            client_backup.sent_cnt(),
            "Client backup sent cnt altered"
        );
        assert_eq!(
            client.transport().backup.received_cnt(),
            client_backup.received_cnt(),
            "Client backup received cnt altered"
        );

        // Verify that client can send a frame and receive a frame, and that there is
        // nothing unexpected in the buffers on either side
        client.write_frame(Frame::new(b"hello")).await.unwrap();
        assert_eq!(transport.read_frame().await.unwrap().unwrap(), b"hello");
        transport.write_frame(Frame::new(b"goodbye")).await.unwrap();
        assert_eq!(client.read_frame().await.unwrap().unwrap(), b"goodbye");
    }

    #[test(tokio::test)]
    async fn reconnect_should_fail_if_connection_is_server_side() {
        let mut connection = Connection::Server {
            id: rand::random(),
            tx: oneshot::channel().0,
            transport: FramedTransport::pair(100).0,
        };

        assert_eq!(
            connection.reconnect().await.unwrap_err().kind(),
            io::ErrorKind::Unsupported
        );
    }

    #[test(tokio::test)]
    async fn client_server_returning_connection_e2e_should_reestablish_connection() {
        let (mut client, transport, verifier, keychain) = setup_reconnect_scenario().await;

        // Spawn a task to perform the server reconnection so we don't deadlock
        let task = tokio::spawn(async move {
            Connection::server(transport, &verifier, keychain)
                .await
                .expect("Failed to connect from server")
        });

        // Reconnect and verify that the connection still works
        client
            .reconnect()
            .await
            .expect("Failed to reconnect from client");

        // Ensure the server is established and then drop it
        let mut server = task.await.unwrap();

        // Test out the connection
        client.write_frame(Frame::new(b"hello")).await.unwrap();
        assert_eq!(server.read_frame().await.unwrap().unwrap(), b"hello");
        server.write_frame(Frame::new(b"goodbye")).await.unwrap();
        assert_eq!(client.read_frame().await.unwrap().unwrap(), b"goodbye");
    }
}