1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
use crate::{shapes::*, tensor::*, tensor_ops::*};
use num_traits::FromPrimitive;

use super::*;

pub mod builder {
    #[derive(Debug, Copy, Clone, Eq, PartialEq)]
    pub struct BatchNorm2D<const C: usize>;
}

impl<const C: usize, E: Dtype, D: Device<E>> BuildOnDevice<D, E> for builder::BatchNorm2D<C>
where
    BatchNorm2D<C, E, D>: BuildModule<D, E>,
{
    type Built = BatchNorm2D<C, E, D>;
    fn try_build_on_device(device: &D) -> Result<Self::Built, D::Err> {
        Self::Built::try_build(device)
    }
}

/// generic batchnorm forward for training
pub fn train_fwd<const C: usize, S: Shape, E: Dtype, D: Device<E>, T: Tape<E, D>, Ax: Axes>(
    x: Tensor<S, E, D, T>,
    var: &mut Tensor<Rank1<C>, E, D>,
    mean: &mut Tensor<Rank1<C>, E, D>,
    scale: &Tensor<Rank1<C>, E, D>,
    bias: &Tensor<Rank1<C>, E, D>,
    epsilon: f64,
    momentum: f64,
) -> Result<Tensor<S, E, D, T>, D::Err>
where
    S: HasAxes<Ax> + ReduceShapeTo<Rank1<C>, Ax>,
{
    let n = f64::from_usize(<S as HasAxes<Ax>>::size(x.shape())).unwrap();
    let shape = *x.shape();

    // compute statistics for updating running stats later - on tape
    let mean_chan = x.retaped::<T>().try_mean::<Rank1<C>, _>()?;

    // update statistics since we are training - off tape
    mean.try_axpy(1.0 - momentum, &mean_chan, momentum)?;

    let centered = x.try_sub(mean_chan.try_broadcast_like(&shape)?)?;

    let var_chan = centered
        .retaped::<T>()
        .try_square()?
        .try_mean::<Rank1<C>, _>()?;

    // NOTE: uses unbiased variance in running estimate
    var.try_axpy(1.0 - momentum, &var_chan, momentum * n / (n - 1.0))?;

    // statistics for normalizing - on tape
    let std = var_chan
        .try_add(E::from_f64(epsilon).unwrap())?
        .try_sqrt()?;

    // record broadcast of scale & bias - on tape
    let scale = scale
        .retaped::<T>()
        .try_div(std)?
        .try_broadcast_like(&shape)?;
    let bias = bias.retaped::<T>().try_broadcast_like(&shape)?;

    // normalize & affine - on tape
    centered.try_mul(scale)?.try_add(bias)
}

/// generic batchnorm forward for inference
pub fn infer_fwd<const C: usize, S: Shape, E: Dtype, D: Device<E>, Ax: Axes>(
    x: Tensor<S, E, D>,
    var: &Tensor<Rank1<C>, E, D>,
    mean: &Tensor<Rank1<C>, E, D>,
    scale: &Tensor<Rank1<C>, E, D>,
    bias: &Tensor<Rank1<C>, E, D>,
    epsilon: f64,
) -> Result<Tensor<S, E, D>, D::Err>
where
    Rank1<C>: BroadcastShapeTo<S, Ax>,
{
    let shape = *x.shape();

    // statistics for normalizing
    let std = var
        .clone()
        .try_add(E::from_f64(epsilon).unwrap())?
        .try_sqrt()?;

    let scale = scale.clone().try_div(std)?.try_broadcast_like(&shape)?;

    // normalize & affine
    let x = x.try_sub(mean.clone().try_broadcast_like(&shape)?)?;
    let x = x.try_mul(scale)?;
    x.try_add(bias.clone().try_broadcast_like(&shape)?)
}

/// Batch normalization for images as described in
/// [Batch Normalization: Accelerating Deep Network Training
/// by Reducing Internal Covariate Shift](https://arxiv.org/abs/1502.03167)
///
/// Generics:
///
/// - `C` the size of the spatial dimension to reduce. For 3d tensors this is the 0th
///   dimension. For 4d tensors, this is the 1st dimension.
///
/// # Training vs Inference
///
/// BatchNorm2D supports the following cases (see sections below for more details):
/// 1. **Training**: [ModuleMut] and [OwnedTape] on the input tensor
/// 2. **Inference**: [Module] and [NoneTape] on the input tensor.
///
/// *NOTE: ModuleMut/NoneTape, and Module/OwnedTape will fail to compile.*
///
/// Examples:
/// ```rust
/// # use dfdx::prelude::*;
/// # let dev: Cpu = Default::default();
/// type Model = BatchNorm2D<3>;
/// let bn = dev.build_module::<Model, f32>();
/// let _ = bn.forward(dev.zeros::<Rank3<3, 2, 2>>());
/// let _ = bn.forward(dev.zeros::<Rank4<4, 3, 2, 2>>());
/// ```
///
/// ### Training
/// - Running statistics: updated with momentum
/// - Normalization: calculated using batch stats
///
/// ### Inference
/// - Running statistics: **not** updated
/// - Normalization: calculated using running stats
#[derive(Clone, Debug)]
pub struct BatchNorm2D<const C: usize, E: Dtype, D: Storage<E>> {
    /// Scale for affine transform. Defaults to 1.0
    pub scale: Tensor<Rank1<C>, E, D>,
    /// Bias for affine transform. Defaults to 0.0
    pub bias: Tensor<Rank1<C>, E, D>,
    /// Spatial mean that is updated during training. Defaults to 0.0
    pub running_mean: Tensor<Rank1<C>, E, D>,
    /// Spatial variance that is updated during training. Defaults to 1.0
    pub running_var: Tensor<Rank1<C>, E, D>,
    /// Added to variance before taking sqrt for numerical stability. Defaults to 1e-5
    pub epsilon: f64,
    /// Controls exponential moving average of running stats.Defaults to 0.1
    ///
    /// `running_stat * (1.0 - momentum) + stat * momentum`.
    pub momentum: f64,
}

impl<const C: usize, E: Dtype, D: Device<E>> BatchNorm2D<C, E, D> {
    fn infer_fwd<S: Shape, Ax: Axes>(&self, x: Tensor<S, E, D>) -> Result<Tensor<S, E, D>, D::Err>
    where
        Rank1<C>: BroadcastShapeTo<S, Ax>,
    {
        infer_fwd(
            x,
            &self.running_var,
            &self.running_mean,
            &self.scale,
            &self.bias,
            self.epsilon,
        )
    }

    fn train_fwd<S: Shape, T: Tape<E, D>, Ax: Axes>(
        &mut self,
        x: Tensor<S, E, D, T>,
    ) -> Result<Tensor<S, E, D, T>, D::Err>
    where
        S: HasAxes<Ax> + ReduceShapeTo<Rank1<C>, Ax>,
    {
        train_fwd(
            x,
            &mut self.running_var,
            &mut self.running_mean,
            &self.scale,
            &self.bias,
            self.epsilon,
            self.momentum,
        )
    }
}

impl<const C: usize, H: Dim, W: Dim, E: Dtype, D: Device<E>>
    Module<Tensor<(Const<C>, H, W), E, D, NoneTape>> for BatchNorm2D<C, E, D>
{
    type Output = Tensor<(Const<C>, H, W), E, D, NoneTape>;
    type Error = D::Err;

    /// Inference 3d forward - does **not** update [Self::running_mean] and [Self::running_var]
    fn try_forward(
        &self,
        x: Tensor<(Const<C>, H, W), E, D, NoneTape>,
    ) -> Result<Self::Output, D::Err> {
        self.infer_fwd(x)
    }
}

impl<B: Dim, const C: usize, H: Dim, W: Dim, E: Dtype, D: Device<E>>
    Module<Tensor<(B, Const<C>, H, W), E, D, NoneTape>> for BatchNorm2D<C, E, D>
{
    type Output = Tensor<(B, Const<C>, H, W), E, D, NoneTape>;
    type Error = D::Err;

    /// Inference 4d forward - does **not** update [Self::running_mean] and [Self::running_var]
    fn try_forward(
        &self,
        x: Tensor<(B, Const<C>, H, W), E, D, NoneTape>,
    ) -> Result<Self::Output, D::Err> {
        self.infer_fwd(x)
    }
}

impl<const C: usize, H: Dim, W: Dim, E: Dtype, D: Device<E>>
    ModuleMut<Tensor<(Const<C>, H, W), E, D, OwnedTape<E, D>>> for BatchNorm2D<C, E, D>
{
    type Output = Tensor<(Const<C>, H, W), E, D, OwnedTape<E, D>>;
    type Error = D::Err;

    /// Training 3d forward - updates [Self::running_mean] and [Self::running_var]
    fn try_forward_mut(
        &mut self,
        x: Tensor<(Const<C>, H, W), E, D, OwnedTape<E, D>>,
    ) -> Result<Self::Output, D::Err> {
        self.train_fwd(x)
    }
}

impl<B: Dim, const C: usize, H: Dim, W: Dim, E: Dtype, D: Device<E>>
    ModuleMut<Tensor<(B, Const<C>, H, W), E, D, OwnedTape<E, D>>> for BatchNorm2D<C, E, D>
{
    type Output = Tensor<(B, Const<C>, H, W), E, D, OwnedTape<E, D>>;
    type Error = D::Err;

    /// Training 4d forward - updates [Self::running_mean] and [Self::running_var]
    fn try_forward_mut(
        &mut self,
        x: Tensor<(B, Const<C>, H, W), E, D, OwnedTape<E, D>>,
    ) -> Result<Self::Output, D::Err> {
        self.train_fwd(x)
    }
}

impl<const C: usize, E: Dtype, D: Device<E>> TensorCollection<E, D> for BatchNorm2D<C, E, D> {
    type To<E2: Dtype, D2: Device<E2>> = BatchNorm2D<C, E2, D2>;

    fn iter_tensors<V: ModuleVisitor<Self, E, D>>(
        visitor: &mut V,
    ) -> Result<Option<Self::To<V::E2, V::D2>>, V::Err> {
        visitor.visit_fields(
            (
                Self::tensor(
                    "scale",
                    |s| &s.scale,
                    |s| &mut s.scale,
                    TensorOptions::reset_to_ones(),
                ),
                Self::tensor(
                    "bias",
                    |s| &s.bias,
                    |s| &mut s.bias,
                    TensorOptions::reset_to_zeros(),
                ),
                Self::tensor(
                    "running_mean",
                    |s| &s.running_mean,
                    |s| &mut s.running_mean,
                    TensorOptions::detached(|t| t.try_fill_with_zeros()),
                ),
                Self::tensor(
                    "running_var",
                    |s| &s.running_var,
                    |s| &mut s.running_var,
                    TensorOptions::detached(|t| t.try_fill_with_ones()),
                ),
                Self::scalar(
                    "epsilon",
                    |s| &s.epsilon,
                    |s| &mut s.epsilon,
                    ScalarOptions::from_default(1e-5),
                ),
                Self::scalar(
                    "momentum",
                    |s| &s.momentum,
                    |s| &mut s.momentum,
                    ScalarOptions::from_default(0.1),
                ),
            ),
            |(scale, bias, running_mean, running_var, epsilon, momentum)| BatchNorm2D {
                scale,
                bias,
                running_mean,
                running_var,
                epsilon,
                momentum,
            },
        )
    }
}

#[cfg(test)]
mod tests {
    use super::builder::BatchNorm2D;
    use crate::{nn::builders::*, optim::*, shapes::*, tensor::*, tensor_ops::*, tests::*};

    #[test]
    fn test_batchnorm2d_3d_forward_mut() {
        let dev = TestDevice::seed_from_u64(0);

        let x1: Tensor<Rank3<3, 2, 2>, TestDtype, _> = dev.sample(rand_distr::StandardNormal);
        let mut bn = BatchNorm2D::<3>::build_on_device(&dev);

        let y1 = bn.forward_mut(x1.leaky_trace());
        assert_close_to_literal!(
            y1,
            [
                [[0.66747534, 0.77682495], [-1.698878, 0.25457793]],
                [[-0.89111614, 1.2611268], [-1.0644908, 0.69448]],
                [[0.19064833, 0.80228466], [0.6924452, -1.6853783]],
            ]
        );

        let g = y1.exp().mean().backward();
        assert_close_to_literal!(bn.running_mean, [-0.0175438, -0.0214163, 0.0268384]);
        assert_close_to_literal!(bn.running_var, [1.1361228, 1.0889612, 1.3478994]);
        assert_close_to_literal!(g.get(&bn.scale), [0.2506705, 0.4257624, 0.257648]);
        assert_close_to_literal!(g.get(&bn.bias), [0.4663894, 0.5239304, 0.4687197]);
        assert_close_to_literal!(
            g.get(&x1),
            [
                [[0.0030178577, 0.011973545], [0.0038383976, -0.018829815]],
                [[-0.0016367957, 0.024275035], [0.0092941, -0.03193234]],
                [[-0.015617318, 0.009291172], [0.0026013851, 0.0037247613]],
            ]
        );
    }

    #[test]
    fn test_batchnorm2d_4d_forward_mut() {
        let dev = TestDevice::seed_from_u64(2);

        let x1: Tensor<Rank4<2, 2, 2, 3>, TestDtype, _> = dev.sample_normal();
        let mut bn = BatchNorm2D::<2>::build_on_device(&dev);

        let y1 = bn.forward_mut(x1.leaky_trace());
        #[rustfmt::skip]
        assert_close_to_literal!(
            y1,
            [
                [[[-0.93348885, -2.1979978, 0.19754872],[0.29159376, -0.6282544, -1.0415624]], [[1.1156346, 0.89029306, -1.1608727],[-0.73874927, 0.13254784, -0.77676374]]],
                [[[0.60655713, 0.62703574, 0.12648833],[1.5577206, 0.18830705, 1.2060523]],[[0.37415895, -0.9069047, -0.9519587],[-0.02608296, 2.3435123, -0.2948149]]],
            ]
        );

        let g = y1.exp().mean().backward();
        assert_close_to_literal!(bn.running_mean, [-0.02424082, 0.00407672]);
        assert_close_to_literal!(bn.running_var, [0.9676103, 1.0458221]);
        assert_close_to_literal!(g.get(&bn.scale), [0.5582906, 1.1929206]);
        assert_close_to_literal!(g.get(&bn.bias), [0.7535024, 0.92750454]);
        #[rustfmt::skip]
        assert_close_to_literal!(
            g.get(&x1),
            [
                [[[-0.00378475, 0.05601016, -0.02694868],[-0.02614748, -0.01439525, 0.00047035]],[[-0.05280511, -0.05561727, 0.04425058],[0.01388359, -0.03710236, 0.01651]]],
                [[[-0.01853323, -0.01773504, -0.02717264],[0.0794776, -0.02699574, 0.02575465]],[[-0.04663141, 0.02567738, 0.0289102],[-0.0294986, 0.10708933, -0.01466625]]],
            ]
        );
    }

    #[test]
    fn test_batchnorm2d_3d_repeated_forward_mut() {
        let dev = TestDevice::seed_from_u64(12);

        let x1: Tensor<Rank3<3, 4, 5>, TestDtype, _> = dev.sample_normal();
        let mut bn = BatchNorm2D::<3>::build_on_device(&dev);

        let _ = bn.forward_mut(x1.leaky_trace());
        assert_close_to_literal!(bn.running_mean, [0.0083191, -0.0370511, -0.0079481]);
        assert_close_to_literal!(bn.running_var, [1.0344709, 0.9340682, 1.0266376]);

        let _ = bn.forward_mut(x1.leaky_trace());
        assert_close_to_literal!(bn.running_mean, [0.0158063, -0.0703971, -0.0151013]);
        assert_close_to_literal!(bn.running_var, [1.0654946, 0.87472963, 1.0506116]);

        let _ = bn.forward_mut(x1.leaky_trace());
        assert_close_to_literal!(bn.running_mean, [0.0225448, -0.1004085, -0.0215393]);
        assert_close_to_literal!(bn.running_var, [1.093416, 0.8213248, 1.0721881]);

        let _ = bn.forward_mut(x1.leaky_trace());
        assert_close_to_literal!(bn.running_mean, [0.0286095, -0.1274188, -0.0273335]);
        assert_close_to_literal!(bn.running_var, [1.1185452, 0.7732605, 1.0916069]);

        let m = bn.running_mean.clone();
        let v = bn.running_var.clone();

        let x2 = dev.sample_normal::<Rank3<3, 2, 2>>();
        let y2 = bn.forward(x2);
        // running stats shouldn't have been updated
        assert_eq!(bn.running_mean.array(), m.array());
        assert_eq!(bn.running_var.array(), v.array());
        assert_close_to_literal!(
            y2,
            [
                [[0.0897828, -0.01880704], [-0.55082226, -0.50515544]],
                [[0.13778551, 0.25317147], [-1.2689502, 0.61595416]],
                [[0.73018146, 0.3243845], [-1.1041277, 0.38778353]],
            ]
        );
    }

    #[test]
    fn test_batchnorm2d_update() {
        let dev: TestDevice = Default::default();

        let x1: Tensor<Rank3<3, 4, 5>, TestDtype, _> = dev.sample_normal();
        let mut bn = dev.build_module::<BatchNorm2D<3>, TestDtype>();
        let y = bn.forward_mut(x1.leaky_trace());
        let g = y.square().mean().backward();

        let mut opt = Sgd::new(&bn, Default::default());
        opt.update(&mut bn, &g).expect("");
    }
}