1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
// The MIT License (MIT)
//
// Copyright (c) 2018 Michael Dilger
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.

use errors::*;
use std::io::{Read, Write};
use std::fmt;
use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt};
use super::{D3DFormat, DxgiFormat, DataFormat};

#[derive(Clone)]
pub struct PixelFormat {
    /// Size of this structure in bytes; set to 32
    pub size: u32,

    /// Values which indicate what type of data is in the surface
    pub flags: PixelFormatFlags,

    /// Codes for specifying compressed or custom formats.
    pub fourcc: Option<FourCC>,

    /// Number of bits in an RGB (possibly including alpha) format. Valid when
    /// flags includes RGB or LUMINANCE.
    pub rgb_bit_count: Option<u32>,

    /// Red (or Y) mask for reading color data. For instance, given the A8R8G8B8 format,
    /// the red mask would be 0x00ff0000.
    pub r_bit_mask: Option<u32>,

    /// Green (or U) mask for reading color data. For instance, given the A8R8G8B8 format,
    /// the green mask would be 0x0000ff00.
    pub g_bit_mask: Option<u32>,

    /// Blue (or V) mask for reading color data. For instance, given the A8R8G8B8 format,
    /// the blue mask would be 0x000000ff
    pub b_bit_mask: Option<u32>,

    /// Alpha mask for reading alpha data. Valid of flags includes ALPHA_PIXELS or ALPHA.
    /// For instance, given the A8R8G8B8 format, the alpha mask would be 0xff000000
    pub a_bit_mask: Option<u32>,
}

impl PixelFormat {
    pub fn read<R: Read>(r: &mut R) -> Result<PixelFormat>
    {
        let size = r.read_u32::<LittleEndian>()?;
        if size != 32 {
            return Err(ErrorKind::InvalidField("Pixel format struct size".to_owned()).into());
        }
        let flags = PixelFormatFlags::from_bits_truncate(
            r.read_u32::<LittleEndian>()?
        );
        let fourcc = r.read_u32::<LittleEndian>()?;
        let rgb_bit_count = r.read_u32::<LittleEndian>()?;
        let r_bit_mask = r.read_u32::<LittleEndian>()?;
        let g_bit_mask = r.read_u32::<LittleEndian>()?;
        let b_bit_mask = r.read_u32::<LittleEndian>()?;
        let a_bit_mask = r.read_u32::<LittleEndian>()?;
        Ok(PixelFormat {
            size: size,
            flags: flags,
            fourcc: if flags.contains(PixelFormatFlags::FOURCC) {
                Some(FourCC(fourcc))
            } else {
                None
            },
            rgb_bit_count: if flags.contains(PixelFormatFlags::RGB)
                || flags.contains(PixelFormatFlags::LUMINANCE)
            {
                Some(rgb_bit_count)
            } else {
                None
            },
            r_bit_mask: if flags.contains(PixelFormatFlags::RGB) {
                Some(r_bit_mask)
            } else {
                None
            },
            g_bit_mask: if flags.contains(PixelFormatFlags::RGB) {
                Some(g_bit_mask)
            } else {
                None
            },
            b_bit_mask: if flags.contains(PixelFormatFlags::RGB) {
                Some(b_bit_mask)
            } else {
                None
            },
            a_bit_mask: if flags.contains(PixelFormatFlags::ALPHA_PIXELS)
                || flags.contains(PixelFormatFlags::ALPHA)
            {
                Some(a_bit_mask)
            } else {
                None
            }
        })
    }

    pub fn write<W: Write>(&self, w: &mut W) -> Result<()>
    {
        w.write_u32::<LittleEndian>(self.size)?;
        w.write_u32::<LittleEndian>(self.flags.bits())?;
        w.write_u32::<LittleEndian>(self.fourcc.as_ref().unwrap_or(&FourCC(0)).0)?;
        w.write_u32::<LittleEndian>(self.rgb_bit_count.unwrap_or(0))?;
        w.write_u32::<LittleEndian>(self.r_bit_mask.unwrap_or(0))?;
        w.write_u32::<LittleEndian>(self.g_bit_mask.unwrap_or(0))?;
        w.write_u32::<LittleEndian>(self.b_bit_mask.unwrap_or(0))?;
        w.write_u32::<LittleEndian>(self.a_bit_mask.unwrap_or(0))?;
        Ok(())
    }
}

impl fmt::Debug for PixelFormat {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        writeln!(f, "    Pixel Format:")?;
        writeln!(f, "      flags: {:?}", self.flags)?;
        writeln!(f, "      fourcc: {:?}", self.fourcc)?;
        writeln!(f, "      bits_per_pixel: {:?}", self.rgb_bit_count)?;
        writeln!(f, "      RGBA bitmasks: {:?}, {:?}, {:?}, {:?}",
                 self.r_bit_mask, self.g_bit_mask, self.b_bit_mask, self.a_bit_mask)?;
        Ok(())
    }
}

impl Default for PixelFormat {
    fn default() -> PixelFormat {
        PixelFormat {
            size: 32, // must be 32
            flags: PixelFormatFlags::empty(),
            fourcc: None,
            rgb_bit_count: None,
            r_bit_mask: None,
            g_bit_mask: None,
            b_bit_mask: None,
            a_bit_mask: None,
        }
    }
}

impl From<D3DFormat> for PixelFormat {
    fn from(format: D3DFormat) -> PixelFormat
    {
        let mut pf: PixelFormat = Default::default();
        if let Some(bpp) = format.get_bits_per_pixel() {
            pf.flags.insert(PixelFormatFlags::RGB);
            pf.rgb_bit_count = Some(bpp as u32)
        }
        else if let Some(fourcc) = format.get_fourcc() {
            pf.flags.insert(PixelFormatFlags::FOURCC);
            pf.fourcc = Some(fourcc);
        }
        if let Some(abitmask) = format.a_bit_mask() {
            pf.flags.insert(PixelFormatFlags::ALPHA_PIXELS);
            pf.a_bit_mask = Some(abitmask);
        }
        pf.r_bit_mask = format.r_bit_mask();
        pf.g_bit_mask = format.g_bit_mask();
        pf.b_bit_mask = format.b_bit_mask();
        pf
    }
}

impl From<DxgiFormat> for PixelFormat {
    fn from(format: DxgiFormat) -> PixelFormat
    {
        let mut pf: PixelFormat = Default::default();
        if let Some(bpp) = format.get_bits_per_pixel() {
            pf.flags.insert(PixelFormatFlags::RGB); // means uncompressed
            pf.rgb_bit_count = Some(bpp as u32)
        }
        pf.fourcc = Some(FourCC(FourCC::DX10)); // we always use extention for Dxgi
        pf.flags.insert(PixelFormatFlags::FOURCC);

        // flags::ALPHA_PIXELS is not set, use DX10 extension.
        // r_bit_mask, g_bit_mask, b_bit_mask and a_bit_mask are not set.
        // FIXME - we may need to set these in some circumstances.
        pf
    }
}

bitflags! {
    pub struct PixelFormatFlags: u32 {
        /// Texture contains alpha data.
        const ALPHA_PIXELS = 0x1;
        /// Alpha channel only uncomressed data (used in older DDS files)
        const ALPHA = 0x2;
        /// Texture contains compressed RGB data.
        const FOURCC = 0x4;
        /// Texture contains uncompressed RGB data.
        const RGB = 0x40;
        /// YUV uncompressed data (used in older DDS files)
        const YUV = 0x200;
        /// Single channel color uncompressed data (used in older DDS files)
        const LUMINANCE = 0x20000;
    }
}

#[derive(Debug, Clone, PartialEq)]
pub struct FourCC(pub u32);

// generate little-endian u32 from 4 bytes
// rust is not ready for this yet
/*
macro_rules! u32_code {
    ($w:expr) => {
        ((($w[0] as u32) <<  0) |
         (($w[1] as u32) <<  8) |
         (($w[2] as u32) << 16) |
         (($w[3] as u32) << 24) |
         ((*$w as [u8; 4])[0] as u32 * 0))
    }
}
 */

impl FourCC {
    pub const NONE: u32 = 0;

    // D3D formats
    pub const DXT1: u32 = 0x31545844; //u32_code!(b"DXT1");
    pub const DXT2: u32 = 0x32545844; //u32_code!(b"DXT2");
    pub const DXT3: u32 = 0x33545844; //u32_code!(b"DXT3");
    pub const DXT4: u32 = 0x34545844; //u32_code!(b"DXT4");
    pub const DXT5: u32 = 0x35545844; //u32_code!(b"DXT5");
    pub const R8G8_B8G8: u32 = 0x47424752; //u32_code!(b"RGBG");
    pub const G8R8_G8B8: u32 = 0x42475247;//u32_code!(b"GRGB");
    pub const A16B16G16R16: u32 = 36;
    pub const Q16W16V16U16: u32 = 110;
    pub const R16F: u32 = 111;
    pub const G16R16F: u32 = 112;
    pub const A16B16G16R16F: u32 = 113;
    pub const R32F: u32 = 114;
    pub const G32R32F: u32 = 115;
    pub const A32B32G32R32F: u32 = 116;
    pub const UYVY: u32 = 0x59565955; //u32_code!(b"UYVY");
    pub const YUY2: u32 = 0x32595559; //u32_code!(b"YUY2");
    pub const CXV8U8: u32 = 117;
    pub const DX10: u32 = 0x30315844; //u32_code!(b"DX10");

    // DXGI formats (different names, often for same things)
    pub const BC1_UNORM: u32 = 0x31545844; //u32_code!(b"DXT1");
    pub const BC2_UNORM: u32 = 0x33545844; //u32_code!(b"DXT3");
    pub const BC3_UNORM: u32 = 0x35545844; //u32_code!(b"DXT5");
    pub const BC4_UNORM: u32 = 0x55344342; //u32_code!(b"BC4U");
    pub const BC4_SNORM: u32 = 0x53344342; //u32_code!(b"BC4S");
    pub const BC5_UNORM: u32 = 0x32495441; //u32_code!(b"ATI2");
    pub const BC5_SNORM: u32 = 0x53354342; //u32_code!(b"BC5S");
    pub const R8G8_B8G8_UNORM: u32 = 0x47424752; //u32_code!(b"RGBG");
    pub const G8R8_G8B8_UNORM: u32 = 0x42475247; //u32_code!(b"GRGB");
    pub const R16G16B16A16_UNORM: u32 = 36;
    pub const R16G16B16A16_SNORM: u32 = 110;
    pub const R16_FLOAT: u32 = 111;
    pub const R16G16_FLOAT: u32 = 112;
    pub const R16G16B16A16_FLOAT: u32 = 113;
    pub const R32_FLOAT: u32 = 114;
    pub const R32G32_FLOAT: u32 = 115;
    pub const R32G32B32A32_FLOAT: u32 = 116;
}