1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
use crate::cxx_string::CxxString;
use core::ffi::c_void;
use core::fmt::{self, Display};
use core::marker::PhantomData;
use core::mem;
use core::ptr;
use core::slice;

/// Binding to C++ `std::vector<T, std::allocator<T>>`.
///
/// # Invariants
///
/// As an invariant of this API and the static analysis of the cxx::bridge
/// macro, in Rust code we can never obtain a `CxxVector` by value. Instead in
/// Rust code we will only ever look at a vector behind a reference or smart
/// pointer, as in `&CxxVector<T>` or `UniquePtr<CxxVector<T>>`.
#[repr(C, packed)]
pub struct CxxVector<T> {
    _private: [T; 0],
}

impl<T> CxxVector<T>
where
    T: VectorElement,
{
    /// Returns the number of elements in the vector.
    ///
    /// Matches the behavior of C++ [std::vector\<T\>::size][size].
    ///
    /// [size]: https://en.cppreference.com/w/cpp/container/vector/size
    pub fn len(&self) -> usize {
        T::__vector_size(self)
    }

    /// Returns true if the vector contains no elements.
    ///
    /// Matches the behavior of C++ [std::vector\<T\>::empty][empty].
    ///
    /// [empty]: https://en.cppreference.com/w/cpp/container/vector/empty
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Returns a reference to an element at the given position, or `None` if
    /// out of bounds.
    pub fn get(&self, pos: usize) -> Option<&T> {
        if pos < self.len() {
            Some(unsafe { self.get_unchecked(pos) })
        } else {
            None
        }
    }

    /// Returns a reference to an element without doing bounds checking.
    ///
    /// This is generally not recommended, use with caution! Calling this method
    /// with an out-of-bounds index is undefined behavior even if the resulting
    /// reference is not used.
    ///
    /// Matches the behavior of C++
    /// [std::vector\<T\>::operator\[\]][operator_at].
    ///
    /// [operator_at]: https://en.cppreference.com/w/cpp/container/vector/operator_at
    pub unsafe fn get_unchecked(&self, pos: usize) -> &T {
        &*T::__get_unchecked(self, pos)
    }

    /// Returns a slice to the underlying contiguous array of elements.
    pub fn as_slice(&self) -> &[T] {
        let len = self.len();
        if len == 0 {
            // The slice::from_raw_parts in the other branch requires a nonnull
            // and properly aligned data ptr. C++ standard does not guarantee
            // that data() on a vector with size 0 would return a nonnull
            // pointer or sufficiently aligned pointer, so using it would be
            // undefined behavior. Create our own empty slice in Rust instead
            // which upholds the invariants.
            &[]
        } else {
            let ptr = unsafe { T::__get_unchecked(self, 0) };
            unsafe { slice::from_raw_parts(ptr, len) }
        }
    }
}

pub struct Iter<'a, T> {
    v: &'a CxxVector<T>,
    index: usize,
}

impl<'a, T> IntoIterator for &'a CxxVector<T>
where
    T: VectorElement,
{
    type Item = &'a T;
    type IntoIter = Iter<'a, T>;

    fn into_iter(self) -> Self::IntoIter {
        Iter { v: self, index: 0 }
    }
}

impl<'a, T> Iterator for Iter<'a, T>
where
    T: VectorElement,
{
    type Item = &'a T;

    fn next(&mut self) -> Option<Self::Item> {
        let next = self.v.get(self.index);
        self.index += 1;
        next
    }
}

pub struct TypeName<T> {
    element: PhantomData<T>,
}

impl<T> TypeName<T> {
    pub const fn new() -> Self {
        TypeName {
            element: PhantomData,
        }
    }
}

impl<T> Display for TypeName<T>
where
    T: VectorElement,
{
    fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
        write!(formatter, "CxxVector<{}>", T::__NAME)
    }
}

// Methods are private; not intended to be implemented outside of cxxbridge
// codebase.
#[doc(hidden)]
pub unsafe trait VectorElement: Sized {
    const __NAME: &'static dyn Display;
    fn __vector_size(v: &CxxVector<Self>) -> usize;
    unsafe fn __get_unchecked(v: &CxxVector<Self>, pos: usize) -> *const Self;
    fn __unique_ptr_null() -> *mut c_void;
    unsafe fn __unique_ptr_raw(raw: *mut CxxVector<Self>) -> *mut c_void;
    unsafe fn __unique_ptr_get(repr: *mut c_void) -> *const CxxVector<Self>;
    unsafe fn __unique_ptr_release(repr: *mut c_void) -> *mut CxxVector<Self>;
    unsafe fn __unique_ptr_drop(repr: *mut c_void);
}

macro_rules! impl_vector_element {
    ($segment:expr, $name:expr, $ty:ty) => {
        const_assert_eq!(1, mem::align_of::<CxxVector<$ty>>());

        unsafe impl VectorElement for $ty {
            const __NAME: &'static dyn Display = &$name;
            fn __vector_size(v: &CxxVector<$ty>) -> usize {
                extern "C" {
                    attr! {
                        #[link_name = concat!("cxxbridge05$std$vector$", $segment, "$size")]
                        fn __vector_size(_: &CxxVector<$ty>) -> usize;
                    }
                }
                unsafe { __vector_size(v) }
            }
            unsafe fn __get_unchecked(v: &CxxVector<$ty>, pos: usize) -> *const $ty {
                extern "C" {
                    attr! {
                        #[link_name = concat!("cxxbridge05$std$vector$", $segment, "$get_unchecked")]
                        fn __get_unchecked(_: &CxxVector<$ty>, _: usize) -> *const $ty;
                    }
                }
                __get_unchecked(v, pos)
            }
            fn __unique_ptr_null() -> *mut c_void {
                extern "C" {
                    attr! {
                        #[link_name = concat!("cxxbridge05$unique_ptr$std$vector$", $segment, "$null")]
                        fn __unique_ptr_null(this: *mut *mut c_void);
                    }
                }
                let mut repr = ptr::null_mut::<c_void>();
                unsafe { __unique_ptr_null(&mut repr) }
                repr
            }
            unsafe fn __unique_ptr_raw(raw: *mut CxxVector<Self>) -> *mut c_void {
                extern "C" {
                    attr! {
                        #[link_name = concat!("cxxbridge05$unique_ptr$std$vector$", $segment, "$raw")]
                        fn __unique_ptr_raw(this: *mut *mut c_void, raw: *mut CxxVector<$ty>);
                    }
                }
                let mut repr = ptr::null_mut::<c_void>();
                __unique_ptr_raw(&mut repr, raw);
                repr
            }
            unsafe fn __unique_ptr_get(repr: *mut c_void) -> *const CxxVector<Self> {
                extern "C" {
                    attr! {
                        #[link_name = concat!("cxxbridge05$unique_ptr$std$vector$", $segment, "$get")]
                        fn __unique_ptr_get(this: *const *mut c_void) -> *const CxxVector<$ty>;
                    }
                }
                __unique_ptr_get(&repr)
            }
            unsafe fn __unique_ptr_release(mut repr: *mut c_void) -> *mut CxxVector<Self> {
                extern "C" {
                    attr! {
                        #[link_name = concat!("cxxbridge05$unique_ptr$std$vector$", $segment, "$release")]
                        fn __unique_ptr_release(this: *mut *mut c_void) -> *mut CxxVector<$ty>;
                    }
                }
                __unique_ptr_release(&mut repr)
            }
            unsafe fn __unique_ptr_drop(mut repr: *mut c_void) {
                extern "C" {
                    attr! {
                        #[link_name = concat!("cxxbridge05$unique_ptr$std$vector$", $segment, "$drop")]
                        fn __unique_ptr_drop(this: *mut *mut c_void);
                    }
                }
                __unique_ptr_drop(&mut repr);
            }
        }
    };
}

macro_rules! impl_vector_element_for_primitive {
    ($ty:ident) => {
        impl_vector_element!(stringify!($ty), stringify!($ty), $ty);
    };
}

impl_vector_element_for_primitive!(u8);
impl_vector_element_for_primitive!(u16);
impl_vector_element_for_primitive!(u32);
impl_vector_element_for_primitive!(u64);
impl_vector_element_for_primitive!(usize);
impl_vector_element_for_primitive!(i8);
impl_vector_element_for_primitive!(i16);
impl_vector_element_for_primitive!(i32);
impl_vector_element_for_primitive!(i64);
impl_vector_element_for_primitive!(isize);
impl_vector_element_for_primitive!(f32);
impl_vector_element_for_primitive!(f64);

impl_vector_element!("string", "CxxString", CxxString);