1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
//! Points on the 2D character grid.

use std::cmp::{max, min, Ordering};
use std::ops::{Add, Div, Mul, Sub};

use num::traits::Zero;

use div;
use XY;

/// Simple 2D size, in cells.
///
/// Note: due to a bug in rustdoc ([#32077]), the documentation for `Vec2` is
/// currently shown on the [`XY`] page.
///
/// [#32077]: https://github.com/rust-lang/rust/issues/32077
/// [`XY`]: ../struct.XY.html
pub type Vec2 = XY<usize>;

impl<T: PartialOrd> PartialOrd for XY<T> {
    /// `a < b` <=> `a.x < b.x && a.y < b.y`
    fn partial_cmp(&self, other: &XY<T>) -> Option<Ordering> {
        if self == other {
            Some(Ordering::Equal)
        } else if self.x < other.x && self.y < other.y {
            Some(Ordering::Less)
        } else if self.x > other.x && self.y > other.y {
            Some(Ordering::Greater)
        } else {
            None
        }
    }
}

impl XY<usize> {
    /// Returns a `Vec2` with `usize::max_value()` in each axis.
    pub fn max_value() -> Self {
        Self::new(usize::max_value(), usize::max_value())
    }

    /// Saturating subtraction. Computes `self - other`, saturating at 0.
    ///
    /// Never panics.
    pub fn saturating_sub<O: Into<Self>>(&self, other: O) -> Self {
        let other = other.into();
        self.zip_map(other, usize::saturating_sub)
    }

    /// Saturating addition with a signed vec.
    ///
    /// Any coordinates saturates to 0.
    pub fn saturating_add<O: Into<XY<isize>>>(&self, other: O) -> Self {
        let other = other.into();

        self.zip_map(other, |s, o| {
            if o > 0 {
                s + o as usize
            } else {
                s.saturating_sub((-o) as usize)
            }
        })
    }

    /// Term-by-term integer division that rounds up.
    pub fn div_up<O>(&self, other: O) -> Self
    where
        O: Into<Self>,
    {
        self.zip_map(other.into(), div::div_up)
    }

    /// Checked subtraction. Computes `self - other` if possible.
    ///
    /// Returns `None` if `self.x < other.x || self.y < other.y`.
    ///
    /// Never panics.
    pub fn checked_sub<O: Into<Self>>(&self, other: O) -> Option<Self> {
        let other = other.into();
        if self.fits(other) {
            Some(*self - other)
        } else {
            None
        }
    }

    /// Returns a `XY<isize>` from `self`.
    pub fn signed(self) -> XY<isize> {
        self.into()
    }
}

impl<T: Ord> XY<T> {
    /// Returns `true` if `self` could fit inside `other`.
    ///
    /// Shortcut for `self.x <= other.x && self.y <= other.y`.
    ///
    /// If this returns `true`, then `other - self` will not underflow.
    pub fn fits_in<O: Into<Self>>(&self, other: O) -> bool {
        let other = other.into();
        self.x <= other.x && self.y <= other.y
    }

    /// Returns `true` if `other` could fit inside `self`.
    ///
    /// Shortcut for `self.x >= other.x && self.y >= other.y`.
    ///
    /// If this returns `true`, then `self - other` will not underflow.
    pub fn fits<O: Into<Self>>(&self, other: O) -> bool {
        let other = other.into();
        self.x >= other.x && self.y >= other.y
    }

    /// Returns a new Vec2 that is a maximum per coordinate.
    pub fn max<A: Into<XY<T>>, B: Into<XY<T>>>(a: A, b: B) -> Self {
        let a = a.into();
        let b = b.into();
        a.zip_map(b, max)
    }

    /// Returns a new Vec2 that is no larger than any input in both dimensions.
    pub fn min<A: Into<XY<T>>, B: Into<XY<T>>>(a: A, b: B) -> Self {
        let a = a.into();
        let b = b.into();
        a.zip_map(b, min)
    }

    /// Returns the minimum of `self` and `other`.
    pub fn or_min<O: Into<XY<T>>>(self, other: O) -> Self {
        Self::min(self, other)
    }

    /// Returns the maximum of `self` and `other`.
    pub fn or_max<O: Into<XY<T>>>(self, other: O) -> Self {
        Self::max(self, other)
    }
}

impl<T: Ord + Add<Output = T> + Clone> XY<T> {
    /// Returns (max(self.x,other.x), self.y+other.y)
    pub fn stack_vertical(&self, other: &Self) -> Self {
        Self::new(
            max(self.x.clone(), other.x.clone()),
            self.y.clone() + other.y.clone(),
        )
    }

    /// Returns (self.x+other.x, max(self.y,other.y))
    pub fn stack_horizontal(&self, other: &Self) -> Self {
        Self::new(
            self.x.clone() + other.x.clone(),
            max(self.y.clone(), other.y.clone()),
        )
    }

    /// Returns `true` if `self` fits in the given rectangle.
    pub fn fits_in_rect<O1, O2>(&self, top_left: O1, size: O2) -> bool
    where
        O1: Into<Self>,
        O2: Into<Self>,
    {
        let top_left = top_left.into();
        self.fits(top_left.clone()) && self < &(top_left + size)
    }
}

impl<T: Zero + Clone> XY<T> {
    /// Returns a vector with the X component of self, and y=0.
    pub fn keep_x(&self) -> Self {
        Self::new(self.x.clone(), T::zero())
    }

    /// Returns a vector with the Y component of self, and x=0.
    pub fn keep_y(&self) -> Self {
        Self::new(T::zero(), self.y.clone())
    }

    /// Alias for `Self::new(0,0)`.
    pub fn zero() -> Self {
        Self::new(T::zero(), T::zero())
    }
}

impl<'a, T> From<&'a XY<T>> for XY<T>
where
    T: Clone,
{
    fn from(t: &'a XY<T>) -> Self {
        t.clone()
    }
}

// Anything that can become XY<usize> can also become XY<isize>
impl<T> From<T> for XY<isize>
where
    T: Into<XY<usize>>,
{
    fn from(t: T) -> Self {
        let other = t.into();
        Self::new(other.x as isize, other.y as isize)
    }
}

impl From<(i32, i32)> for XY<usize> {
    fn from((x, y): (i32, i32)) -> Self {
        (x as usize, y as usize).into()
    }
}

impl From<(u32, u32)> for XY<usize> {
    fn from((x, y): (u32, u32)) -> Self {
        (x as usize, y as usize).into()
    }
}

impl From<(u8, u8)> for XY<usize> {
    fn from((x, y): (u8, u8)) -> Self {
        (x as usize, y as usize).into()
    }
}

impl From<(u16, u16)> for XY<usize> {
    fn from((x, y): (u16, u16)) -> Self {
        (x as usize, y as usize).into()
    }
}

// Allow xy + (into xy)
impl<T, O> Add<O> for XY<T>
where
    T: Add<Output = T>,
    O: Into<XY<T>>,
{
    type Output = Self;

    fn add(self, other: O) -> Self {
        self.zip_map(other.into(), Add::add)
    }
}

impl<T, O> Sub<O> for XY<T>
where
    T: Sub<Output = T>,
    O: Into<XY<T>>,
{
    type Output = Self;

    fn sub(self, other: O) -> Self {
        self.zip_map(other.into(), Sub::sub)
    }
}

impl<T: Clone + Div<Output = T>> Div<T> for XY<T> {
    type Output = Self;

    fn div(self, other: T) -> Self {
        self.map(|s| s / other.clone())
    }
}

impl Mul<usize> for XY<usize> {
    type Output = Vec2;

    fn mul(self, other: usize) -> Vec2 {
        self.map(|s| s * other)
    }
}

impl<T> Mul<XY<T>> for XY<T>
where
    T: Mul<T>,
{
    type Output = XY<T::Output>;

    fn mul(self, other: XY<T>) -> Self::Output {
        self.zip_map(other, |s, o| s * o)
    }
}
impl<T> Div<XY<T>> for XY<T>
where
    T: Div<T>,
{
    type Output = XY<T::Output>;

    fn div(self, other: XY<T>) -> Self::Output {
        self.zip_map(other, |s, o| s / o)
    }
}

#[cfg(test)]
mod tests {
    use super::Vec2;

    #[test]
    fn test_from() {
        let vi32 = Vec2::from((4i32, 5i32));
        let vu32 = Vec2::from((4u32, 5u32));

        let vusize = Vec2::from((4usize, 5usize));
        let vvec = Vec2::from(Vec2::new(4, 5));

        assert_eq!(vi32 - vu32, vusize - vvec);
    }
}