1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
use Printer;
use With;
use XY;
use direction;
use event::{Event, EventResult, Key};

use std::any::Any;
use std::cmp::min;
use vec::Vec2;
use view::{Selector, SizeCache};
use view::View;

/// Arranges its children linearly according to its orientation.
pub struct LinearLayout {
    children: Vec<Child>,
    orientation: direction::Orientation,
    focus: usize,

    cache: Option<XY<SizeCache>>,
}

struct Child {
    view: Box<View>,
    size: Vec2,
    weight: usize,
}

impl Child {
    fn get_min_size(&mut self, req: Vec2) -> Vec2 {
        self.size = self.view.get_min_size(req);
        self.size
    }

    fn as_view(&self) -> &View {
        &*self.view
    }
}

impl LinearLayout {
    /// Creates a new layout with the given orientation.
    pub fn new(orientation: direction::Orientation) -> Self {
        LinearLayout {
            children: Vec::new(),
            orientation: orientation,
            focus: 0,
            cache: None,
        }
    }

    /// Modifies the weight of the last child added.
    ///
    /// It is an error to call this before adding a child (and it will panic).
    pub fn weight(mut self, weight: usize) -> Self {
        self.children.last_mut().unwrap().weight = weight;

        self
    }

    /// Adds a child to the layout.
    ///
    /// Chainable variant.
    pub fn child<V: View + 'static>(self, view: V) -> Self {
        self.with(|s| s.add_child(view))
    }

    /// Adds a child to the layout.
    pub fn add_child<V: View + 'static>(&mut self, view: V) {
        self.children.push(Child {
            view: Box::new(view),
            size: Vec2::zero(),
            weight: 0,
        });
        self.invalidate();
    }

    // Invalidate the view, to request a layout next time
    fn invalidate(&mut self) {
        self.cache = None;
    }

    /// Creates a new vertical layout.
    pub fn vertical() -> Self {
        LinearLayout::new(direction::Orientation::Vertical)
    }

    /// Creates a new horizontal layout.
    pub fn horizontal() -> Self {
        LinearLayout::new(direction::Orientation::Horizontal)
    }

    // If the cache can be used, return the cached size.
    // Otherwise, return None.
    fn get_cache(&self, req: Vec2) -> Option<Vec2> {
        match self.cache {
            None => None,
            Some(ref cache) => {
                // Is our cache even valid?
                // Also, is any child invalidating the layout?
                if cache.zip_map(req, SizeCache::accept).both() &&
                   self.children_are_sleeping() {
                    Some(cache.map(|s| s.value))
                } else {
                    None
                }
            }
        }
    }

    fn children_are_sleeping(&self) -> bool {
        !self.children
            .iter()
            .map(Child::as_view)
            .any(View::needs_relayout)
    }

    /// Returns a cyclic mutable iterator starting with the child in focus
    fn iter_mut<'a>(&'a mut self, from_focus: bool,
                    source: direction::Relative)
                    -> Box<Iterator<Item = (usize, &mut Child)> + 'a> {

        match source {
            direction::Relative::Front => {
                let start = if from_focus { self.focus } else { 0 };

                Box::new(self.children.iter_mut().enumerate().skip(start))
            }
            direction::Relative::Back => {
                let end = if from_focus {
                    self.focus + 1
                } else {
                    self.children.len()
                };
                Box::new(self.children[..end].iter_mut().enumerate().rev())
            }
        }
    }

    fn move_focus(&mut self, source: direction::Direction) -> EventResult {

        let i = if let Some(i) = source.relative(self.orientation)
            .and_then(|rel| {
                // The iterator starts at the focused element.
                // We don't want that one.
                self.iter_mut(true, rel)
                    .skip(1)
                    .filter_map(|p| try_focus(p, source))
                    .next()
            }) {
            i
        } else {
            return EventResult::Ignored;
        };
        self.focus = i;
        EventResult::Consumed(None)
    }
}

fn try_focus((i, child): (usize, &mut Child), source: direction::Direction)
             -> Option<usize> {
    if child.view.take_focus(source) {
        Some(i)
    } else {
        None
    }
}

impl View for LinearLayout {
    fn draw(&self, printer: &Printer) {
        // Use pre-computed sizes
        let mut offset = Vec2::zero();
        for (i, child) in self.children.iter().enumerate() {
            let printer =
                &printer.sub_printer(offset, child.size, i == self.focus);
            child.view.draw(printer);

            // On the axis given by the orientation,
            // add the child size to the offset.
            *self.orientation.get_ref(&mut offset) += self.orientation
                .get(&child.size);
        }
    }

    fn needs_relayout(&self) -> bool {
        if self.cache.is_none() {
            return true;
        }

        !self.children_are_sleeping()
    }

    fn layout(&mut self, size: Vec2) {
        // If we can get away without breaking a sweat, you can bet we will.
        if self.get_cache(size).is_none() {
            self.get_min_size(size);
        }

        let o = self.orientation;

        for child in &mut self.children {
            child.size.set_axis_from(o.swap(), &size);
            child.view.layout(size.with_axis_from(o, &child.size));
        }
    }

    fn get_min_size(&mut self, req: Vec2) -> Vec2 {
        // Did anything change since last time?
        if let Some(size) = self.get_cache(req) {
            return size;
        }

        // First, make a naive scenario: everything will work fine.
        let sizes: Vec<Vec2> = self.children
            .iter_mut()
            .map(|c| c.get_min_size(req))
            .collect();
        // println_stderr!("Ideal sizes: {:?}", sizes);
        let ideal = self.orientation.stack(sizes.iter());
        // println_stderr!("Ideal result: {:?}", ideal);


        // Does it fit?
        if ideal.fits_in(req) {
            // Champagne!
            self.cache = Some(SizeCache::build(ideal, req));
            return ideal;
        }

        // Ok, so maybe it didn't.
        // Budget cuts, everyone.
        let budget_req = req.with_axis(self.orientation, 1);
        // println_stderr!("Budget req: {:?}", budget_req);

        // See how they like it that way
        let min_sizes: Vec<Vec2> = self.children
            .iter_mut()
            .map(|c| c.get_min_size(budget_req))
            .collect();
        let desperate = self.orientation.stack(min_sizes.iter());
        // println_stderr!("Min sizes: {:?}", min_sizes);
        // println_stderr!("Desperate: {:?}", desperate);

        // This is the lowest we'll ever go. It better fit at least.
        if !desperate.fits_in(req) {
            // Just give up...
            // TODO: print some error message or something
            // println_stderr!("Seriously? {:?} > {:?}???", desperate, req);
            // self.cache = Some(SizeCache::build(desperate, req));
            self.cache = None;
            return desperate;
        }

        // This here is how much we're generously offered
        // (We just checked that req >= desperate, so the substraction is safe
        let mut available = self.orientation.get(&(req - desperate));
        // println_stderr!("Available: {:?}", available);

        // Here, we have to make a compromise between the ideal
        // and the desperate solutions.
        let mut overweight: Vec<(usize, usize)> = sizes.iter()
            .map(|v| self.orientation.get(v))
            .zip(min_sizes.iter().map(|v| self.orientation.get(v)))
            .map(|(a, b)| if a > b { a - b } else { 0 })
            .enumerate()
            .collect();
        // println_stderr!("Overweight: {:?}", overweight);

        // So... distribute `available` to reduce the overweight...
        // TODO: use child weight in the distribution...

        // We'll give everyone his share of what we have left,
        // starting with those who ask the least.
        overweight.sort_by_key(|&(_, weight)| weight);
        let mut allocations = vec![0; overweight.len()];

        for (i, &(j, weight)) in overweight.iter().enumerate() {
            // This is the number of people we still have to feed.
            let remaining = overweight.len() - i;
            // How much we can spare on each one
            let budget = available / remaining;
            // Maybe he doesn't even need that much?
            let spent = min(budget, weight);
            allocations[j] = spent;
            available -= spent;
        }
        // println_stderr!("Allocations: {:?}", allocations);

        // Final lengths are the minimum ones + generous allocations
        let final_lengths: Vec<Vec2> = min_sizes.iter()
            .map(|v| self.orientation.get(v))
            .zip(allocations.iter())
            .map(|(a, b)| a + b)
            .map(|l| req.with_axis(self.orientation, l))
            .collect();
        // println_stderr!("Final sizes: {:?}", final_lengths);

        // Let's ask everyone one last time. Everyone should be happy.
        // (But they may ask more on the other axis.)
        let final_sizes: Vec<Vec2> = self.children
            .iter_mut()
            .enumerate()
            .map(|(i, c)| c.get_min_size(final_lengths[i]))
            .collect();
        // println_stderr!("Final sizes2: {:?}", final_sizes);

        // Let's stack everything to see what it looks like.
        let compromise = self.orientation.stack(final_sizes.iter());

        // Phew, that was a lot of work! I'm not doing it again.
        self.cache = Some(SizeCache::build(compromise, req));

        compromise
    }

    fn take_focus(&mut self, source: direction::Direction) -> bool {
        // In what order will we iterate on the children?
        let rel = source.relative(self.orientation);
        // We activate from_focus only if coming from the "sides".
        let i = if let Some(i) = self.iter_mut(rel.is_none(),
                      rel.unwrap_or(direction::Relative::Front))
            .filter_map(|p| try_focus(p, source))
            .next() {

            // ... we can't update `self.focus` here,
            // because rustc thinks we still borrow `self`.
            // :(
            i
        } else {
            return false;
        };

        self.focus = i;
        true
    }

    fn on_event(&mut self, event: Event) -> EventResult {
        match self.children[self.focus].view.on_event(event) {
            EventResult::Ignored => {
                match event {
                    Event::Shift(Key::Tab) if self.focus > 0 => {
                        self.move_focus(direction::Direction::back())
                    }
                    Event::Key(Key::Tab) if self.focus + 1 <
                                            self.children.len() => {
                        self.move_focus(direction::Direction::front())
                    }
                    Event::Key(Key::Left)
                        if self.orientation ==
                           direction::Orientation::Horizontal &&
                           self.focus > 0 => {
                        self.move_focus(direction::Direction::right())
                    }
                    Event::Key(Key::Up) if self.orientation ==
                                           direction::Orientation::Vertical &&
                                           self.focus > 0 => {
                        self.move_focus(direction::Direction::down())
                    }
                    Event::Key(Key::Right)
                        if self.orientation ==
                           direction::Orientation::Horizontal &&
                           self.focus + 1 <
                           self.children.len() => {
                        self.move_focus(direction::Direction::left())
                    }
                    Event::Key(Key::Down)
                        if self.orientation ==
                           direction::Orientation::Vertical &&
                           self.focus + 1 <
                           self.children.len() => {
                        self.move_focus(direction::Direction::up())
                    }
                    _ => EventResult::Ignored,
                }
            }
            res => res,
        }
    }

    fn find_any(&mut self, selector: &Selector) -> Option<&mut Any> {
        self.children
            .iter_mut()
            .filter_map(|c| c.view.find_any(selector))
            .next()
    }
}