1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
use cryptix_bigint::{ops::BigIntOpsExt, property::IsBigInt};
use crate::{OddModular, PrimeModular};
use super::primefield::FpElement;
/// this is the trait for faster modular multiplication, see HAC 14.36 for reference
///
/// The constraint is that gcd(base, P) = 1, we do not want to explicitly constraint the value of base, so
/// we constraint P to an odd prime, then this algorithm will be correct for all possible value of bases.
pub trait Montgomery<I>
where
Self: PrimeModular<I> + OddModular<I> + Sized,
I: BigIntOpsExt,
{
/// R mod P where R = b^(I::DIG_LEN)
const R_P: FpElement<I, Self>;
/// R^{-1} mod P where R = b^(I::DIG_LEN)
const R_INV_P: FpElement<I, Self>;
/// R * R mod P where R = b^(I::DIG_LEN)
const RR_P: FpElement<I, Self>;
/// -P^(-1) mod b where b is base of I
const NEG_P_INV_B: <I as IsBigInt>::Dig;
}
pub trait MontgomeryOps<I, M>
where
I: BigIntOpsExt,
M: PrimeModular<I> + OddModular<I> + Montgomery<I>,
Self: Copy + From<FpElement<I, M>>
{
/// lhs * rhs * R^(-1) mod P
fn mont_mul(self, rhs: Self) -> Self;
fn mont_mul_fp(self, rhs: FpElement<I, M>) -> Self;
/// a^2 * R^(-1) mod P
fn mont_sqr(self) -> Self {
self.mont_mul(self)
}
/// a * R^(-1) mod P
fn mont_rdc(self) -> Self;
/// a * R mod P
fn mont_form(self) -> Self {
self.mont_mul_fp(M::RR_P)
}
/// base^exp mod P
fn mont_exp(self, exp: I) -> Self {
let mut a: Self = M::R_P.into();
let x = self.mont_mul_fp(M::RR_P);
let t = exp.bit_len();
for i in (0..t).rev() {
a = a.mont_sqr();
if exp.bit(i) {
a = a.mont_mul(x)
}
}
a.mont_rdc()
}
/// - input: a
/// - output: a^(-1) * RR mod P
///
/// We use algorithm 3 described in paper [Montgomery Inverse](https://cetinkayakoc.net/docs/j82.pdf) here
fn mont_inv(self) -> Self;
}