1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
use std::collections::BTreeMap;
#[cfg(feature = "iterator")]
use std::iter;
#[cfg(feature = "iterator")]
use std::ops::{Bound, RangeBounds};

use crate::errors::StdResult;
#[cfg(feature = "iterator")]
use crate::iterator::{Order, KV};
use crate::traits::{ReadonlyStorage, Storage};

#[derive(Default)]
pub struct MemoryStorage {
    data: BTreeMap<Vec<u8>, Vec<u8>>,
}

impl MemoryStorage {
    pub fn new() -> Self {
        MemoryStorage::default()
    }
}

impl ReadonlyStorage for MemoryStorage {
    fn get(&self, key: &[u8]) -> StdResult<Option<Vec<u8>>> {
        Ok(self.data.get(key).cloned())
    }

    #[cfg(feature = "iterator")]
    /// range allows iteration over a set of keys, either forwards or backwards
    /// uses standard rust range notation, and eg db.range(b"foo"..b"bar") also works reverse
    fn range<'a>(
        &'a self,
        start: Option<&[u8]>,
        end: Option<&[u8]>,
        order: Order,
    ) -> StdResult<Box<dyn Iterator<Item = StdResult<KV>> + 'a>> {
        let bounds = range_bounds(start, end);

        // BTreeMap.range panics if range is start > end.
        // However, this cases represent just empty range and we treat it as such.
        match (bounds.start_bound(), bounds.end_bound()) {
            (Bound::Included(start), Bound::Excluded(end)) if start > end => {
                return Ok(Box::new(iter::empty()));
            }
            _ => {}
        }

        let iter = self.data.range(bounds);
        Ok(match order {
            Order::Ascending => Box::new(iter.map(clone_item).map(StdResult::Ok)),
            Order::Descending => Box::new(iter.rev().map(clone_item).map(StdResult::Ok)),
        })
    }
}

#[cfg(feature = "iterator")]
fn range_bounds(start: Option<&[u8]>, end: Option<&[u8]>) -> impl RangeBounds<Vec<u8>> {
    (
        start.map_or(Bound::Unbounded, |x| Bound::Included(x.to_vec())),
        end.map_or(Bound::Unbounded, |x| Bound::Excluded(x.to_vec())),
    )
}

#[cfg(feature = "iterator")]
/// The BTreeMap specific key-value pair reference type, as returned by BTreeMap<Vec<u8>, T>::range.
/// This is internal as it can change any time if the map implementation is swapped out.
type BTreeMapPairRef<'a, T = Vec<u8>> = (&'a Vec<u8>, &'a T);

#[cfg(feature = "iterator")]
fn clone_item<T: Clone>(item_ref: BTreeMapPairRef<T>) -> KV<T> {
    let (key, value) = item_ref;
    (key.clone(), value.clone())
}

impl Storage for MemoryStorage {
    fn set(&mut self, key: &[u8], value: &[u8]) -> StdResult<()> {
        self.data.insert(key.to_vec(), value.to_vec());
        Ok(())
    }

    fn remove(&mut self, key: &[u8]) -> StdResult<()> {
        self.data.remove(key);
        Ok(())
    }
}

#[cfg(test)]
mod test {
    use super::*;

    #[cfg(feature = "iterator")]
    // iterator_test_suite takes a storage, adds data and runs iterator tests
    // the storage must previously have exactly one key: "foo" = "bar"
    // (this allows us to test StorageTransaction and other wrapped storage better)
    fn iterator_test_suite<S: Storage>(store: &mut S) {
        // ensure we had previously set "foo" = "bar"
        assert_eq!(store.get(b"foo").unwrap(), Some(b"bar".to_vec()));
        assert_eq!(
            store.range(None, None, Order::Ascending).unwrap().count(),
            1
        );

        // setup - add some data, and delete part of it as well
        store.set(b"ant", b"hill").expect("error setting value");
        store.set(b"ze", b"bra").expect("error setting value");

        // noise that should be ignored
        store.set(b"bye", b"bye").expect("error setting value");
        store.remove(b"bye").expect("error removing key");

        // unbounded
        {
            let iter = store.range(None, None, Order::Ascending).unwrap();
            let elements: Vec<KV> = iter.filter_map(StdResult::ok).collect();
            assert_eq!(
                elements,
                vec![
                    (b"ant".to_vec(), b"hill".to_vec()),
                    (b"foo".to_vec(), b"bar".to_vec()),
                    (b"ze".to_vec(), b"bra".to_vec()),
                ]
            );
        }

        // unbounded (descending)
        {
            let iter = store.range(None, None, Order::Descending).unwrap();
            let elements: Vec<KV> = iter.filter_map(StdResult::ok).collect();
            assert_eq!(
                elements,
                vec![
                    (b"ze".to_vec(), b"bra".to_vec()),
                    (b"foo".to_vec(), b"bar".to_vec()),
                    (b"ant".to_vec(), b"hill".to_vec()),
                ]
            );
        }

        // bounded
        {
            let iter = store
                .range(Some(b"f"), Some(b"n"), Order::Ascending)
                .unwrap();
            let elements: Vec<KV> = iter.filter_map(StdResult::ok).collect();
            assert_eq!(elements, vec![(b"foo".to_vec(), b"bar".to_vec())]);
        }

        // bounded (descending)
        {
            let iter = store
                .range(Some(b"air"), Some(b"loop"), Order::Descending)
                .unwrap();
            let elements: Vec<KV> = iter.filter_map(StdResult::ok).collect();
            assert_eq!(
                elements,
                vec![
                    (b"foo".to_vec(), b"bar".to_vec()),
                    (b"ant".to_vec(), b"hill".to_vec()),
                ]
            );
        }

        // bounded empty [a, a)
        {
            let iter = store
                .range(Some(b"foo"), Some(b"foo"), Order::Ascending)
                .unwrap();
            let elements: Vec<KV> = iter.filter_map(StdResult::ok).collect();
            assert_eq!(elements, vec![]);
        }

        // bounded empty [a, a) (descending)
        {
            let iter = store
                .range(Some(b"foo"), Some(b"foo"), Order::Descending)
                .unwrap();
            let elements: Vec<KV> = iter.filter_map(StdResult::ok).collect();
            assert_eq!(elements, vec![]);
        }

        // bounded empty [a, b) with b < a
        {
            let iter = store
                .range(Some(b"z"), Some(b"a"), Order::Ascending)
                .unwrap();
            let elements: Vec<KV> = iter.filter_map(StdResult::ok).collect();
            assert_eq!(elements, vec![]);
        }

        // bounded empty [a, b) with b < a (descending)
        {
            let iter = store
                .range(Some(b"z"), Some(b"a"), Order::Descending)
                .unwrap();
            let elements: Vec<KV> = iter.filter_map(StdResult::ok).collect();
            assert_eq!(elements, vec![]);
        }

        // right unbounded
        {
            let iter = store.range(Some(b"f"), None, Order::Ascending).unwrap();
            let elements: Vec<KV> = iter.filter_map(StdResult::ok).collect();
            assert_eq!(
                elements,
                vec![
                    (b"foo".to_vec(), b"bar".to_vec()),
                    (b"ze".to_vec(), b"bra".to_vec()),
                ]
            );
        }

        // right unbounded (descending)
        {
            let iter = store.range(Some(b"f"), None, Order::Descending).unwrap();
            let elements: Vec<KV> = iter.filter_map(StdResult::ok).collect();
            assert_eq!(
                elements,
                vec![
                    (b"ze".to_vec(), b"bra".to_vec()),
                    (b"foo".to_vec(), b"bar".to_vec()),
                ]
            );
        }

        // left unbounded
        {
            let iter = store.range(None, Some(b"f"), Order::Ascending).unwrap();
            let elements: Vec<KV> = iter.filter_map(StdResult::ok).collect();
            assert_eq!(elements, vec![(b"ant".to_vec(), b"hill".to_vec()),]);
        }

        // left unbounded (descending)
        {
            let iter = store.range(None, Some(b"no"), Order::Descending).unwrap();
            let elements: Vec<KV> = iter.filter_map(StdResult::ok).collect();
            assert_eq!(
                elements,
                vec![
                    (b"foo".to_vec(), b"bar".to_vec()),
                    (b"ant".to_vec(), b"hill".to_vec()),
                ]
            );
        }
    }

    #[test]
    fn get_and_set() {
        let mut store = MemoryStorage::new();
        assert_eq!(None, store.get(b"foo").unwrap());
        store.set(b"foo", b"bar").unwrap();
        assert_eq!(Some(b"bar".to_vec()), store.get(b"foo").unwrap());
        assert_eq!(None, store.get(b"food").unwrap());
    }

    #[test]
    fn delete() {
        let mut store = MemoryStorage::new();
        store.set(b"foo", b"bar").unwrap();
        store.set(b"food", b"bank").unwrap();
        store.remove(b"foo").unwrap();

        assert_eq!(None, store.get(b"foo").unwrap());
        assert_eq!(Some(b"bank".to_vec()), store.get(b"food").unwrap());
    }

    #[test]
    #[cfg(feature = "iterator")]
    fn iterator() {
        let mut store = MemoryStorage::new();
        store.set(b"foo", b"bar").expect("error setting value");
        iterator_test_suite(&mut store);
    }
}