1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
//! System Control Block

use core::ptr;

use volatile_register::RW;

#[cfg(not(armv6m))]
use super::cpuid::CsselrCacheType;
#[cfg(not(armv6m))]
use super::CBP;
#[cfg(not(armv6m))]
use super::CPUID;
use super::SCB;

/// Register block
#[repr(C)]
pub struct RegisterBlock {
    /// Interrupt Control and State
    pub icsr: RW<u32>,

    /// Vector Table Offset (not present on Cortex-M0 variants)
    pub vtor: RW<u32>,

    /// Application Interrupt and Reset Control
    pub aircr: RW<u32>,

    /// System Control
    pub scr: RW<u32>,

    /// Configuration and Control
    pub ccr: RW<u32>,

    /// System Handler Priority (word accessible only on Cortex-M0 variants)
    ///
    /// On ARMv7-M, `shpr[0]` points to SHPR1
    ///
    /// On ARMv6-M, `shpr[0]` points to SHPR2
    #[cfg(not(armv6m))]
    pub shpr: [RW<u8>; 12],
    #[cfg(armv6m)]
    _reserved1: u32,
    /// System Handler Priority (word accessible only on Cortex-M0 variants)
    ///
    /// On ARMv7-M, `shpr[0]` points to SHPR1
    ///
    /// On ARMv6-M, `shpr[0]` points to SHPR2
    #[cfg(armv6m)]
    pub shpr: [RW<u32>; 2],

    /// System Handler Control and State
    pub shcsr: RW<u32>,

    /// Configurable Fault Status (not present on Cortex-M0 variants)
    #[cfg(not(armv6m))]
    pub cfsr: RW<u32>,
    #[cfg(armv6m)]
    _reserved2: u32,

    /// HardFault Status (not present on Cortex-M0 variants)
    #[cfg(not(armv6m))]
    pub hfsr: RW<u32>,
    #[cfg(armv6m)]
    _reserved3: u32,

    /// Debug Fault Status (not present on Cortex-M0 variants)
    #[cfg(not(armv6m))]
    pub dfsr: RW<u32>,
    #[cfg(armv6m)]
    _reserved4: u32,

    /// MemManage Fault Address (not present on Cortex-M0 variants)
    #[cfg(not(armv6m))]
    pub mmfar: RW<u32>,
    #[cfg(armv6m)]
    _reserved5: u32,

    /// BusFault Address (not present on Cortex-M0 variants)
    #[cfg(not(armv6m))]
    pub bfar: RW<u32>,
    #[cfg(armv6m)]
    _reserved6: u32,

    /// Auxiliary Fault Status (not present on Cortex-M0 variants)
    #[cfg(not(armv6m))]
    pub afsr: RW<u32>,
    #[cfg(armv6m)]
    _reserved7: u32,

    _reserved8: [u32; 18],

    /// Coprocessor Access Control (not present on Cortex-M0 variants)
    #[cfg(not(armv6m))]
    pub cpacr: RW<u32>,
    #[cfg(armv6m)]
    _reserved9: u32,
}

/// FPU access mode
#[cfg(has_fpu)]
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum FpuAccessMode {
    /// FPU is not accessible
    Disabled,
    /// FPU is accessible in Privileged and User mode
    Enabled,
    /// FPU is accessible in Privileged mode only
    Privileged,
}

#[cfg(has_fpu)]
mod fpu_consts {
    pub const SCB_CPACR_FPU_MASK: u32 = 0b11_11 << 20;
    pub const SCB_CPACR_FPU_ENABLE: u32 = 0b01_01 << 20;
    pub const SCB_CPACR_FPU_USER: u32 = 0b10_10 << 20;
}

#[cfg(has_fpu)]
use self::fpu_consts::*;

#[cfg(has_fpu)]
impl SCB {
    /// Shorthand for `set_fpu_access_mode(FpuAccessMode::Disabled)`
    #[inline]
    pub fn disable_fpu(&mut self) {
        self.set_fpu_access_mode(FpuAccessMode::Disabled)
    }

    /// Shorthand for `set_fpu_access_mode(FpuAccessMode::Enabled)`
    #[inline]
    pub fn enable_fpu(&mut self) {
        self.set_fpu_access_mode(FpuAccessMode::Enabled)
    }

    /// Gets FPU access mode
    #[inline]
    pub fn fpu_access_mode() -> FpuAccessMode {
        // NOTE(unsafe) atomic read operation with no side effects
        let cpacr = unsafe { (*Self::ptr()).cpacr.read() };

        if cpacr & SCB_CPACR_FPU_MASK == SCB_CPACR_FPU_ENABLE | SCB_CPACR_FPU_USER {
            FpuAccessMode::Enabled
        } else if cpacr & SCB_CPACR_FPU_MASK == SCB_CPACR_FPU_ENABLE {
            FpuAccessMode::Privileged
        } else {
            FpuAccessMode::Disabled
        }
    }

    /// Sets FPU access mode
    ///
    /// *IMPORTANT* Any function that runs fully or partly with the FPU disabled must *not* take any
    /// floating-point arguments or have any floating-point local variables. Because the compiler
    /// might inline such a function into a caller that does have floating-point arguments or
    /// variables, any such function must be also marked #[inline(never)].
    #[inline]
    pub fn set_fpu_access_mode(&mut self, mode: FpuAccessMode) {
        let mut cpacr = self.cpacr.read() & !SCB_CPACR_FPU_MASK;
        match mode {
            FpuAccessMode::Disabled => (),
            FpuAccessMode::Privileged => cpacr |= SCB_CPACR_FPU_ENABLE,
            FpuAccessMode::Enabled => cpacr |= SCB_CPACR_FPU_ENABLE | SCB_CPACR_FPU_USER,
        }
        unsafe { self.cpacr.write(cpacr) }
    }
}

impl SCB {
    /// Returns the active exception number
    #[inline]
    pub fn vect_active() -> VectActive {
        let icsr = unsafe { ptr::read(&(*SCB::ptr()).icsr as *const _ as *const u32) };

        match icsr as u8 {
            0 => VectActive::ThreadMode,
            2 => VectActive::Exception(Exception::NonMaskableInt),
            3 => VectActive::Exception(Exception::HardFault),
            #[cfg(not(armv6m))]
            4 => VectActive::Exception(Exception::MemoryManagement),
            #[cfg(not(armv6m))]
            5 => VectActive::Exception(Exception::BusFault),
            #[cfg(not(armv6m))]
            6 => VectActive::Exception(Exception::UsageFault),
            #[cfg(any(armv8m, target_arch = "x86_64"))]
            7 => VectActive::Exception(Exception::SecureFault),
            11 => VectActive::Exception(Exception::SVCall),
            #[cfg(not(armv6m))]
            12 => VectActive::Exception(Exception::DebugMonitor),
            14 => VectActive::Exception(Exception::PendSV),
            15 => VectActive::Exception(Exception::SysTick),
            irqn => VectActive::Interrupt { irqn: irqn - 16 },
        }
    }
}

/// Processor core exceptions (internal interrupts)
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum Exception {
    /// Non maskable interrupt
    NonMaskableInt,

    /// Hard fault interrupt
    HardFault,

    /// Memory management interrupt (not present on Cortex-M0 variants)
    #[cfg(not(armv6m))]
    MemoryManagement,

    /// Bus fault interrupt (not present on Cortex-M0 variants)
    #[cfg(not(armv6m))]
    BusFault,

    /// Usage fault interrupt (not present on Cortex-M0 variants)
    #[cfg(not(armv6m))]
    UsageFault,

    /// Secure fault interrupt (only on ARMv8-M)
    #[cfg(any(armv8m, target_arch = "x86_64"))]
    SecureFault,

    /// SV call interrupt
    SVCall,

    /// Debug monitor interrupt (not present on Cortex-M0 variants)
    #[cfg(not(armv6m))]
    DebugMonitor,

    /// Pend SV interrupt
    PendSV,

    /// System Tick interrupt
    SysTick,
}

impl Exception {
    /// Returns the IRQ number of this `Exception`
    ///
    /// The return value is always within the closed range `[-1, -14]`
    #[inline]
    pub fn irqn(self) -> i8 {
        match self {
            Exception::NonMaskableInt => -14,
            Exception::HardFault => -13,
            #[cfg(not(armv6m))]
            Exception::MemoryManagement => -12,
            #[cfg(not(armv6m))]
            Exception::BusFault => -11,
            #[cfg(not(armv6m))]
            Exception::UsageFault => -10,
            #[cfg(any(armv8m, target_arch = "x86_64"))]
            Exception::SecureFault => -9,
            Exception::SVCall => -5,
            #[cfg(not(armv6m))]
            Exception::DebugMonitor => -4,
            Exception::PendSV => -2,
            Exception::SysTick => -1,
        }
    }
}

/// Active exception number
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum VectActive {
    /// Thread mode
    ThreadMode,

    /// Processor core exception (internal interrupts)
    Exception(Exception),

    /// Device specific exception (external interrupts)
    Interrupt {
        /// Interrupt number. This number is always within half open range `[0, 240)`
        irqn: u8,
    },
}

impl VectActive {
    /// Converts a `byte` into `VectActive`
    #[inline]
    pub fn from(vect_active: u8) -> Option<Self> {
        Some(match vect_active {
            0 => VectActive::ThreadMode,
            2 => VectActive::Exception(Exception::NonMaskableInt),
            3 => VectActive::Exception(Exception::HardFault),
            #[cfg(not(armv6m))]
            4 => VectActive::Exception(Exception::MemoryManagement),
            #[cfg(not(armv6m))]
            5 => VectActive::Exception(Exception::BusFault),
            #[cfg(not(armv6m))]
            6 => VectActive::Exception(Exception::UsageFault),
            #[cfg(any(armv8m, target_arch = "x86_64"))]
            7 => VectActive::Exception(Exception::SecureFault),
            11 => VectActive::Exception(Exception::SVCall),
            #[cfg(not(armv6m))]
            12 => VectActive::Exception(Exception::DebugMonitor),
            14 => VectActive::Exception(Exception::PendSV),
            15 => VectActive::Exception(Exception::SysTick),
            irqn if irqn >= 16 => VectActive::Interrupt { irqn },
            _ => return None,
        })
    }
}

#[cfg(not(armv6m))]
mod scb_consts {
    pub const SCB_CCR_IC_MASK: u32 = 1 << 17;
    pub const SCB_CCR_DC_MASK: u32 = 1 << 16;
}

#[cfg(not(armv6m))]
use self::scb_consts::*;

#[cfg(not(armv6m))]
impl SCB {
    /// Enables I-cache if currently disabled.
    ///
    /// This operation first invalidates the entire I-cache.
    #[inline]
    pub fn enable_icache(&mut self) {
        // Don't do anything if I-cache is already enabled
        if Self::icache_enabled() {
            return;
        }

        // NOTE(unsafe): No races as all CBP registers are write-only and stateless
        let mut cbp = unsafe { CBP::new() };

        // Invalidate I-cache
        cbp.iciallu();

        // Enable I-cache
        extern "C" {
            // see asm-v7m.s
            fn __enable_icache();
        }

        // NOTE(unsafe): The asm routine manages exclusive access to the SCB
        // registers and applies the proper barriers; it is technically safe on
        // its own, and is only `unsafe` here because it's `extern "C"`.
        unsafe {
            __enable_icache();
        }
    }

    /// Disables I-cache if currently enabled.
    ///
    /// This operation invalidates the entire I-cache after disabling.
    #[inline]
    pub fn disable_icache(&mut self) {
        // Don't do anything if I-cache is already disabled
        if !Self::icache_enabled() {
            return;
        }

        // NOTE(unsafe): No races as all CBP registers are write-only and stateless
        let mut cbp = unsafe { CBP::new() };

        // Disable I-cache
        // NOTE(unsafe): We have synchronised access by &mut self
        unsafe { self.ccr.modify(|r| r & !SCB_CCR_IC_MASK) };

        // Invalidate I-cache
        cbp.iciallu();

        crate::asm::dsb();
        crate::asm::isb();
    }

    /// Returns whether the I-cache is currently enabled.
    #[inline(always)]
    pub fn icache_enabled() -> bool {
        crate::asm::dsb();
        crate::asm::isb();

        // NOTE(unsafe): atomic read with no side effects
        unsafe { (*Self::ptr()).ccr.read() & SCB_CCR_IC_MASK == SCB_CCR_IC_MASK }
    }

    /// Invalidates the entire I-cache.
    #[inline]
    pub fn invalidate_icache(&mut self) {
        // NOTE(unsafe): No races as all CBP registers are write-only and stateless
        let mut cbp = unsafe { CBP::new() };

        // Invalidate I-cache
        cbp.iciallu();

        crate::asm::dsb();
        crate::asm::isb();
    }

    /// Enables D-cache if currently disabled.
    ///
    /// This operation first invalidates the entire D-cache, ensuring it does
    /// not contain stale values before being enabled.
    #[inline]
    pub fn enable_dcache(&mut self, cpuid: &mut CPUID) {
        // Don't do anything if D-cache is already enabled
        if Self::dcache_enabled() {
            return;
        }

        // Invalidate anything currently in the D-cache
        unsafe { self.invalidate_dcache(cpuid) };

        // Now turn on the D-cache
        extern "C" {
            // see asm-v7m.s
            fn __enable_dcache();
        }

        // NOTE(unsafe): The asm routine manages exclusive access to the SCB
        // registers and applies the proper barriers; it is technically safe on
        // its own, and is only `unsafe` here because it's `extern "C"`.
        unsafe {
            __enable_dcache();
        }
    }

    /// Disables D-cache if currently enabled.
    ///
    /// This operation subsequently cleans and invalidates the entire D-cache,
    /// ensuring all contents are safely written back to main memory after disabling.
    #[inline]
    pub fn disable_dcache(&mut self, cpuid: &mut CPUID) {
        // Don't do anything if D-cache is already disabled
        if !Self::dcache_enabled() {
            return;
        }

        // Turn off the D-cache
        // NOTE(unsafe): We have synchronised access by &mut self
        unsafe { self.ccr.modify(|r| r & !SCB_CCR_DC_MASK) };

        // Clean and invalidate whatever was left in it
        self.clean_invalidate_dcache(cpuid);
    }

    /// Returns whether the D-cache is currently enabled.
    #[inline]
    pub fn dcache_enabled() -> bool {
        crate::asm::dsb();
        crate::asm::isb();

        // NOTE(unsafe) atomic read with no side effects
        unsafe { (*Self::ptr()).ccr.read() & SCB_CCR_DC_MASK == SCB_CCR_DC_MASK }
    }

    /// Invalidates the entire D-cache.
    ///
    /// Note that calling this while the dcache is enabled will probably wipe out the
    /// stack, depending on optimisations, therefore breaking returning to the call point.
    ///
    /// It's used immediately before enabling the dcache, but not exported publicly.
    #[inline]
    unsafe fn invalidate_dcache(&mut self, cpuid: &mut CPUID) {
        // NOTE(unsafe): No races as all CBP registers are write-only and stateless
        let mut cbp = CBP::new();

        // Read number of sets and ways
        let (sets, ways) = cpuid.cache_num_sets_ways(0, CsselrCacheType::DataOrUnified);

        // Invalidate entire D-cache
        for set in 0..sets {
            for way in 0..ways {
                cbp.dcisw(set, way);
            }
        }

        crate::asm::dsb();
        crate::asm::isb();
    }

    /// Cleans the entire D-cache.
    ///
    /// This function causes everything in the D-cache to be written back to main memory,
    /// overwriting whatever is already there.
    #[inline]
    pub fn clean_dcache(&mut self, cpuid: &mut CPUID) {
        // NOTE(unsafe): No races as all CBP registers are write-only and stateless
        let mut cbp = unsafe { CBP::new() };

        // Read number of sets and ways
        let (sets, ways) = cpuid.cache_num_sets_ways(0, CsselrCacheType::DataOrUnified);

        for set in 0..sets {
            for way in 0..ways {
                cbp.dccsw(set, way);
            }
        }

        crate::asm::dsb();
        crate::asm::isb();
    }

    /// Cleans and invalidates the entire D-cache.
    ///
    /// This function causes everything in the D-cache to be written back to main memory,
    /// and then marks the entire D-cache as invalid, causing future reads to first fetch
    /// from main memory.
    #[inline]
    pub fn clean_invalidate_dcache(&mut self, cpuid: &mut CPUID) {
        // NOTE(unsafe): No races as all CBP registers are write-only and stateless
        let mut cbp = unsafe { CBP::new() };

        // Read number of sets and ways
        let (sets, ways) = cpuid.cache_num_sets_ways(0, CsselrCacheType::DataOrUnified);

        for set in 0..sets {
            for way in 0..ways {
                cbp.dccisw(set, way);
            }
        }

        crate::asm::dsb();
        crate::asm::isb();
    }

    /// Invalidates D-cache by address.
    ///
    /// * `addr`: The address to invalidate, which must be cache-line aligned.
    /// * `size`: Number of bytes to invalidate, which must be a multiple of the cache line size.
    ///
    /// Invalidates D-cache cache lines, starting from the first line containing `addr`,
    /// finishing once at least `size` bytes have been invalidated.
    ///
    /// Invalidation causes the next read access to memory to be fetched from main memory instead
    /// of the cache.
    ///
    /// # Cache Line Sizes
    ///
    /// Cache line sizes vary by core. For all Cortex-M7 cores, the cache line size is fixed
    /// to 32 bytes, which means `addr` must be 32-byte aligned and `size` must be a multiple
    /// of 32. At the time of writing, no other Cortex-M cores have data caches.
    ///
    /// If `addr` is not cache-line aligned, or `size` is not a multiple of the cache line size,
    /// other data before or after the desired memory would also be invalidated, which can very
    /// easily cause memory corruption and undefined behaviour.
    ///
    /// # Safety
    ///
    /// After invalidating, the next read of invalidated data will be from main memory. This may
    /// cause recent writes to be lost, potentially including writes that initialized objects.
    /// Therefore, this method may cause uninitialized memory or invalid values to be read,
    /// resulting in undefined behaviour. You must ensure that main memory contains valid and
    /// initialized values before invalidating.
    ///
    /// `addr` **must** be aligned to the size of the cache lines, and `size` **must** be a
    /// multiple of the cache line size, otherwise this function will invalidate other memory,
    /// easily leading to memory corruption and undefined behaviour. This precondition is checked
    /// in debug builds using a `debug_assert!()`, but not checked in release builds to avoid
    /// a runtime-dependent `panic!()` call.
    #[inline]
    pub unsafe fn invalidate_dcache_by_address(&mut self, addr: usize, size: usize) {
        // No-op zero sized operations
        if size == 0 {
            return;
        }

        // NOTE(unsafe): No races as all CBP registers are write-only and stateless
        let mut cbp = CBP::new();

        // dminline is log2(num words), so 2**dminline * 4 gives size in bytes
        let dminline = CPUID::cache_dminline();
        let line_size = (1 << dminline) * 4;

        debug_assert!((addr & (line_size - 1)) == 0);
        debug_assert!((size & (line_size - 1)) == 0);

        crate::asm::dsb();

        // Find number of cache lines to invalidate
        let num_lines = ((size - 1) / line_size) + 1;

        // Compute address of first cache line
        let mask = 0xFFFF_FFFF - (line_size - 1);
        let mut addr = addr & mask;

        for _ in 0..num_lines {
            cbp.dcimvac(addr as u32);
            addr += line_size;
        }

        crate::asm::dsb();
        crate::asm::isb();
    }

    /// Invalidates an object from the D-cache.
    ///
    /// * `obj`: The object to invalidate.
    ///
    /// Invalidates D-cache starting from the first cache line containing `obj`,
    /// continuing to invalidate cache lines until all of `obj` has been invalidated.
    ///
    /// Invalidation causes the next read access to memory to be fetched from main memory instead
    /// of the cache.
    ///
    /// # Cache Line Sizes
    ///
    /// Cache line sizes vary by core. For all Cortex-M7 cores, the cache line size is fixed
    /// to 32 bytes, which means `obj` must be 32-byte aligned, and its size must be a multiple
    /// of 32 bytes. At the time of writing, no other Cortex-M cores have data caches.
    ///
    /// If `obj` is not cache-line aligned, or its size is not a multiple of the cache line size,
    /// other data before or after the desired memory would also be invalidated, which can very
    /// easily cause memory corruption and undefined behaviour.
    ///
    /// # Safety
    ///
    /// After invalidating, `obj` will be read from main memory on next access. This may cause
    /// recent writes to `obj` to be lost, potentially including the write that initialized it.
    /// Therefore, this method may cause uninitialized memory or invalid values to be read,
    /// resulting in undefined behaviour. You must ensure that main memory contains a valid and
    /// initialized value for T before invalidating `obj`.
    ///
    /// `obj` **must** be aligned to the size of the cache lines, and its size **must** be a
    /// multiple of the cache line size, otherwise this function will invalidate other memory,
    /// easily leading to memory corruption and undefined behaviour. This precondition is checked
    /// in debug builds using a `debug_assert!()`, but not checked in release builds to avoid
    /// a runtime-dependent `panic!()` call.
    #[inline]
    pub unsafe fn invalidate_dcache_by_ref<T>(&mut self, obj: &mut T) {
        self.invalidate_dcache_by_address(obj as *const T as usize, core::mem::size_of::<T>());
    }

    /// Invalidates a slice from the D-cache.
    ///
    /// * `slice`: The slice to invalidate.
    ///
    /// Invalidates D-cache starting from the first cache line containing members of `slice`,
    /// continuing to invalidate cache lines until all of `slice` has been invalidated.
    ///
    /// Invalidation causes the next read access to memory to be fetched from main memory instead
    /// of the cache.
    ///
    /// # Cache Line Sizes
    ///
    /// Cache line sizes vary by core. For all Cortex-M7 cores, the cache line size is fixed
    /// to 32 bytes, which means `slice` must be 32-byte aligned, and its size must be a multiple
    /// of 32 bytes. At the time of writing, no other Cortex-M cores have data caches.
    ///
    /// If `slice` is not cache-line aligned, or its size is not a multiple of the cache line size,
    /// other data before or after the desired memory would also be invalidated, which can very
    /// easily cause memory corruption and undefined behaviour.
    ///
    /// # Safety
    ///
    /// After invalidating, `slice` will be read from main memory on next access. This may cause
    /// recent writes to `slice` to be lost, potentially including the write that initialized it.
    /// Therefore, this method may cause uninitialized memory or invalid values to be read,
    /// resulting in undefined behaviour. You must ensure that main memory contains valid and
    /// initialized values for T before invalidating `slice`.
    ///
    /// `slice` **must** be aligned to the size of the cache lines, and its size **must** be a
    /// multiple of the cache line size, otherwise this function will invalidate other memory,
    /// easily leading to memory corruption and undefined behaviour. This precondition is checked
    /// in debug builds using a `debug_assert!()`, but not checked in release builds to avoid
    /// a runtime-dependent `panic!()` call.
    #[inline]
    pub unsafe fn invalidate_dcache_by_slice<T>(&mut self, slice: &mut [T]) {
        self.invalidate_dcache_by_address(
            slice.as_ptr() as usize,
            slice.len() * core::mem::size_of::<T>(),
        );
    }

    /// Cleans D-cache by address.
    ///
    /// * `addr`: The address to start cleaning at.
    /// * `size`: The number of bytes to clean.
    ///
    /// Cleans D-cache cache lines, starting from the first line containing `addr`,
    /// finishing once at least `size` bytes have been invalidated.
    ///
    /// Cleaning the cache causes whatever data is present in the cache to be immediately written
    /// to main memory, overwriting whatever was in main memory.
    ///
    /// # Cache Line Sizes
    ///
    /// Cache line sizes vary by core. For all Cortex-M7 cores, the cache line size is fixed
    /// to 32 bytes, which means `addr` should generally be 32-byte aligned and `size` should be a
    /// multiple of 32. At the time of writing, no other Cortex-M cores have data caches.
    ///
    /// If `addr` is not cache-line aligned, or `size` is not a multiple of the cache line size,
    /// other data before or after the desired memory will also be cleaned. From the point of view
    /// of the core executing this function, memory remains consistent, so this is not unsound,
    /// but is worth knowing about.
    #[inline]
    pub fn clean_dcache_by_address(&mut self, addr: usize, size: usize) {
        // No-op zero sized operations
        if size == 0 {
            return;
        }

        // NOTE(unsafe): No races as all CBP registers are write-only and stateless
        let mut cbp = unsafe { CBP::new() };

        crate::asm::dsb();

        let dminline = CPUID::cache_dminline();
        let line_size = (1 << dminline) * 4;
        let num_lines = ((size - 1) / line_size) + 1;

        let mask = 0xFFFF_FFFF - (line_size - 1);
        let mut addr = addr & mask;

        for _ in 0..num_lines {
            cbp.dccmvac(addr as u32);
            addr += line_size;
        }

        crate::asm::dsb();
        crate::asm::isb();
    }

    /// Cleans an object from the D-cache.
    ///
    /// * `obj`: The object to clean.
    ///
    /// Cleans D-cache starting from the first cache line containing `obj`,
    /// continuing to clean cache lines until all of `obj` has been cleaned.
    ///
    /// It is recommended that `obj` is both aligned to the cache line size and a multiple of
    /// the cache line size long, otherwise surrounding data will also be cleaned.
    ///
    /// Cleaning the cache causes whatever data is present in the cache to be immediately written
    /// to main memory, overwriting whatever was in main memory.
    #[inline]
    pub fn clean_dcache_by_ref<T>(&mut self, obj: &T) {
        self.clean_dcache_by_address(obj as *const T as usize, core::mem::size_of::<T>());
    }

    /// Cleans a slice from D-cache.
    ///
    /// * `slice`: The slice to clean.
    ///
    /// Cleans D-cache starting from the first cache line containing members of `slice`,
    /// continuing to clean cache lines until all of `slice` has been cleaned.
    ///
    /// It is recommended that `slice` is both aligned to the cache line size and a multiple of
    /// the cache line size long, otherwise surrounding data will also be cleaned.
    ///
    /// Cleaning the cache causes whatever data is present in the cache to be immediately written
    /// to main memory, overwriting whatever was in main memory.
    #[inline]
    pub fn clean_dcache_by_slice<T>(&mut self, slice: &[T]) {
        self.clean_dcache_by_address(
            slice.as_ptr() as usize,
            slice.len() * core::mem::size_of::<T>(),
        );
    }

    /// Cleans and invalidates D-cache by address.
    ///
    /// * `addr`: The address to clean and invalidate.
    /// * `size`: The number of bytes to clean and invalidate.
    ///
    /// Cleans and invalidates D-cache starting from the first cache line containing `addr`,
    /// finishing once at least `size` bytes have been cleaned and invalidated.
    ///
    /// It is recommended that `addr` is aligned to the cache line size and `size` is a multiple of
    /// the cache line size, otherwise surrounding data will also be cleaned.
    ///
    /// Cleaning and invalidating causes data in the D-cache to be written back to main memory,
    /// and then marks that data in the D-cache as invalid, causing future reads to first fetch
    /// from main memory.
    #[inline]
    pub fn clean_invalidate_dcache_by_address(&mut self, addr: usize, size: usize) {
        // No-op zero sized operations
        if size == 0 {
            return;
        }

        // NOTE(unsafe): No races as all CBP registers are write-only and stateless
        let mut cbp = unsafe { CBP::new() };

        crate::asm::dsb();

        // Cache lines are fixed to 32 bit on Cortex-M7 and not present in earlier Cortex-M
        const LINESIZE: usize = 32;
        let num_lines = ((size - 1) / LINESIZE) + 1;

        let mut addr = addr & 0xFFFF_FFE0;

        for _ in 0..num_lines {
            cbp.dccimvac(addr as u32);
            addr += LINESIZE;
        }

        crate::asm::dsb();
        crate::asm::isb();
    }
}

const SCB_SCR_SLEEPDEEP: u32 = 0x1 << 2;

impl SCB {
    /// Set the SLEEPDEEP bit in the SCR register
    #[inline]
    pub fn set_sleepdeep(&mut self) {
        unsafe {
            self.scr.modify(|scr| scr | SCB_SCR_SLEEPDEEP);
        }
    }

    /// Clear the SLEEPDEEP bit in the SCR register
    #[inline]
    pub fn clear_sleepdeep(&mut self) {
        unsafe {
            self.scr.modify(|scr| scr & !SCB_SCR_SLEEPDEEP);
        }
    }
}

const SCB_SCR_SLEEPONEXIT: u32 = 0x1 << 1;

impl SCB {
    /// Set the SLEEPONEXIT bit in the SCR register
    #[inline]
    pub fn set_sleeponexit(&mut self) {
        unsafe {
            self.scr.modify(|scr| scr | SCB_SCR_SLEEPONEXIT);
        }
    }

    /// Clear the SLEEPONEXIT bit in the SCR register
    #[inline]
    pub fn clear_sleeponexit(&mut self) {
        unsafe {
            self.scr.modify(|scr| scr & !SCB_SCR_SLEEPONEXIT);
        }
    }
}

const SCB_AIRCR_VECTKEY: u32 = 0x05FA << 16;
const SCB_AIRCR_PRIGROUP_MASK: u32 = 0x5 << 8;
const SCB_AIRCR_SYSRESETREQ: u32 = 1 << 2;

impl SCB {
    /// Initiate a system reset request to reset the MCU
    #[inline]
    pub fn sys_reset() -> ! {
        crate::asm::dsb();
        unsafe {
            (*Self::ptr()).aircr.modify(
                |r| {
                    SCB_AIRCR_VECTKEY | // otherwise the write is ignored
            r & SCB_AIRCR_PRIGROUP_MASK | // keep priority group unchanged
            SCB_AIRCR_SYSRESETREQ
                }, // set the bit
            )
        };
        crate::asm::dsb();
        loop {
            // wait for the reset
            crate::asm::nop(); // avoid rust-lang/rust#28728
        }
    }
}

const SCB_ICSR_PENDSVSET: u32 = 1 << 28;
const SCB_ICSR_PENDSVCLR: u32 = 1 << 27;

const SCB_ICSR_PENDSTSET: u32 = 1 << 26;
const SCB_ICSR_PENDSTCLR: u32 = 1 << 25;

impl SCB {
    /// Set the PENDSVSET bit in the ICSR register which will pend the PendSV interrupt
    #[inline]
    pub fn set_pendsv() {
        unsafe {
            (*Self::ptr()).icsr.write(SCB_ICSR_PENDSVSET);
        }
    }

    /// Check if PENDSVSET bit in the ICSR register is set meaning PendSV interrupt is pending
    #[inline]
    pub fn is_pendsv_pending() -> bool {
        unsafe { (*Self::ptr()).icsr.read() & SCB_ICSR_PENDSVSET == SCB_ICSR_PENDSVSET }
    }

    /// Set the PENDSVCLR bit in the ICSR register which will clear a pending PendSV interrupt
    #[inline]
    pub fn clear_pendsv() {
        unsafe {
            (*Self::ptr()).icsr.write(SCB_ICSR_PENDSVCLR);
        }
    }

    /// Set the PENDSTSET bit in the ICSR register which will pend a SysTick interrupt
    #[inline]
    pub fn set_pendst() {
        unsafe {
            (*Self::ptr()).icsr.write(SCB_ICSR_PENDSTSET);
        }
    }

    /// Check if PENDSTSET bit in the ICSR register is set meaning SysTick interrupt is pending
    #[inline]
    pub fn is_pendst_pending() -> bool {
        unsafe { (*Self::ptr()).icsr.read() & SCB_ICSR_PENDSTSET == SCB_ICSR_PENDSTSET }
    }

    /// Set the PENDSTCLR bit in the ICSR register which will clear a pending SysTick interrupt
    #[inline]
    pub fn clear_pendst() {
        unsafe {
            (*Self::ptr()).icsr.write(SCB_ICSR_PENDSTCLR);
        }
    }
}

/// System handlers, exceptions with configurable priority
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
#[repr(u8)]
pub enum SystemHandler {
    // NonMaskableInt, // priority is fixed
    // HardFault, // priority is fixed
    /// Memory management interrupt (not present on Cortex-M0 variants)
    #[cfg(not(armv6m))]
    MemoryManagement = 4,

    /// Bus fault interrupt (not present on Cortex-M0 variants)
    #[cfg(not(armv6m))]
    BusFault = 5,

    /// Usage fault interrupt (not present on Cortex-M0 variants)
    #[cfg(not(armv6m))]
    UsageFault = 6,

    /// Secure fault interrupt (only on ARMv8-M)
    #[cfg(any(armv8m, target_arch = "x86_64"))]
    SecureFault = 7,

    /// SV call interrupt
    SVCall = 11,

    /// Debug monitor interrupt (not present on Cortex-M0 variants)
    #[cfg(not(armv6m))]
    DebugMonitor = 12,

    /// Pend SV interrupt
    PendSV = 14,

    /// System Tick interrupt
    SysTick = 15,
}

impl SCB {
    /// Returns the hardware priority of `system_handler`
    ///
    /// *NOTE*: Hardware priority does not exactly match logical priority levels. See
    /// [`NVIC.get_priority`](struct.NVIC.html#method.get_priority) for more details.
    #[inline]
    pub fn get_priority(system_handler: SystemHandler) -> u8 {
        let index = system_handler as u8;

        #[cfg(not(armv6m))]
        {
            // NOTE(unsafe) atomic read with no side effects

            // NOTE(unsafe): Index is bounded to [4,15] by SystemHandler design.
            // TODO: Review it after rust-lang/rust/issues/13926 will be fixed.
            let priority_ref = unsafe { (*Self::ptr()).shpr.get_unchecked(usize::from(index - 4)) };

            priority_ref.read()
        }

        #[cfg(armv6m)]
        {
            // NOTE(unsafe) atomic read with no side effects

            // NOTE(unsafe): Index is bounded to [11,15] by SystemHandler design.
            // TODO: Review it after rust-lang/rust/issues/13926 will be fixed.
            let priority_ref = unsafe {
                (*Self::ptr())
                    .shpr
                    .get_unchecked(usize::from((index - 8) / 4))
            };

            let shpr = priority_ref.read();
            let prio = (shpr >> (8 * (index % 4))) & 0x0000_00ff;
            prio as u8
        }
    }

    /// Sets the hardware priority of `system_handler` to `prio`
    ///
    /// *NOTE*: Hardware priority does not exactly match logical priority levels. See
    /// [`NVIC.get_priority`](struct.NVIC.html#method.get_priority) for more details.
    ///
    /// On ARMv6-M, updating a system handler priority requires a read-modify-write operation. On
    /// ARMv7-M, the operation is performed in a single, atomic write operation.
    ///
    /// # Unsafety
    ///
    /// Changing priority levels can break priority-based critical sections (see
    /// [`register::basepri`](../register/basepri/index.html)) and compromise memory safety.
    #[inline]
    pub unsafe fn set_priority(&mut self, system_handler: SystemHandler, prio: u8) {
        let index = system_handler as u8;

        #[cfg(not(armv6m))]
        {
            // NOTE(unsafe): Index is bounded to [4,15] by SystemHandler design.
            // TODO: Review it after rust-lang/rust/issues/13926 will be fixed.
            let priority_ref = (*Self::ptr()).shpr.get_unchecked(usize::from(index - 4));

            priority_ref.write(prio)
        }

        #[cfg(armv6m)]
        {
            // NOTE(unsafe): Index is bounded to [11,15] by SystemHandler design.
            // TODO: Review it after rust-lang/rust/issues/13926 will be fixed.
            let priority_ref = (*Self::ptr())
                .shpr
                .get_unchecked(usize::from((index - 8) / 4));

            priority_ref.modify(|value| {
                let shift = 8 * (index % 4);
                let mask = 0x0000_00ff << shift;
                let prio = u32::from(prio) << shift;

                (value & !mask) | prio
            });
        }
    }

    /// Return the bit position of the exception enable bit in the SHCSR register
    #[inline]
    #[cfg(not(any(armv6m, armv8m_base)))]
    fn shcsr_enable_shift(exception: Exception) -> Option<u32> {
        match exception {
            Exception::MemoryManagement => Some(16),
            Exception::BusFault => Some(17),
            Exception::UsageFault => Some(18),
            #[cfg(armv8m_main)]
            Exception::SecureFault => Some(19),
            _ => None,
        }
    }

    /// Enable the exception
    ///
    /// If the exception is enabled, when the exception is triggered, the exception handler will be executed instead of the
    /// HardFault handler.
    /// This function is only allowed on the following exceptions:
    /// * `MemoryManagement`
    /// * `BusFault`
    /// * `UsageFault`
    /// * `SecureFault` (can only be enabled from Secure state)
    ///
    /// Calling this function with any other exception will do nothing.
    #[inline]
    #[cfg(not(any(armv6m, armv8m_base)))]
    pub fn enable(&mut self, exception: Exception) {
        if let Some(shift) = SCB::shcsr_enable_shift(exception) {
            // The mutable reference to SCB makes sure that only this code is currently modifying
            // the register.
            unsafe { self.shcsr.modify(|value| value | (1 << shift)) }
        }
    }

    /// Disable the exception
    ///
    /// If the exception is disabled, when the exception is triggered, the HardFault handler will be executed instead of the
    /// exception handler.
    /// This function is only allowed on the following exceptions:
    /// * `MemoryManagement`
    /// * `BusFault`
    /// * `UsageFault`
    /// * `SecureFault` (can not be changed from Non-secure state)
    ///
    /// Calling this function with any other exception will do nothing.
    #[inline]
    #[cfg(not(any(armv6m, armv8m_base)))]
    pub fn disable(&mut self, exception: Exception) {
        if let Some(shift) = SCB::shcsr_enable_shift(exception) {
            // The mutable reference to SCB makes sure that only this code is currently modifying
            // the register.
            unsafe { self.shcsr.modify(|value| value & !(1 << shift)) }
        }
    }

    /// Check if an exception is enabled
    ///
    /// This function is only allowed on the following exception:
    /// * `MemoryManagement`
    /// * `BusFault`
    /// * `UsageFault`
    /// * `SecureFault` (can not be read from Non-secure state)
    ///
    /// Calling this function with any other exception will read `false`.
    #[inline]
    #[cfg(not(any(armv6m, armv8m_base)))]
    pub fn is_enabled(&self, exception: Exception) -> bool {
        if let Some(shift) = SCB::shcsr_enable_shift(exception) {
            (self.shcsr.read() & (1 << shift)) > 0
        } else {
            false
        }
    }
}