1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
//! Const equivalents of many [`bytemuck`] functions,
//! and a few additional const functions.
//!
//! `constmuck` uses `bytemuck`'s traits,
//! so any type that implements those traits can be used with the
//! relevant functions from this crate.
//!
//! The `*_alt` functions aren't exactly equivalent to the `bytemuck` ones,
//! each one describes how it's different.
//!
//! # Examples
//!
//! These examples use bytemuck's derives to show how users don't need to
//! write `unsafe` to use this crate,
//! and use the [`konst`] crate to make writing the const functions easier.
//!
//! ### Contiguous
//!
//! This example demonstrates constructing an enum from its representation.
//!
//! ```rust
//!
//! use constmuck::{Contiguous, infer};
//!
//! use konst::{array, try_opt};
//!
//! fn main() {
//!     const COLORS: Option<[Color; 5]> = Color::from_array([3, 4, 1, 0, 2]);
//!     assert_eq!(
//!         COLORS,
//!         Some([Color::White, Color::Black, Color::Blue, Color::Red, Color::Green]),
//!     );
//!
//!     const NONE_COLORS: Option<[Color; 4]> = Color::from_array([1, 2, 3, 5]);
//!     assert_eq!(NONE_COLORS, None);
//! }
//!
//! #[repr(u8)]
//! # #[derive(Debug, PartialEq, Eq, Copy, Clone)]
//! # /*
//! #[derive(Debug, PartialEq, Eq, Contiguous, Copy, Clone)]
//! # */
//! pub enum Color {
//!     Red = 0,
//!     Blue,
//!     Green,
//!     White,
//!     Black,
//! }
//! # unsafe impl Contiguous for Color {
//! #   type Int = u8;
//! #
//! #   const MIN_VALUE: u8 = 0;
//! #   const MAX_VALUE: u8 = 4;
//! # }
//!
//! impl Color {
//!     pub const fn from_int(n: u8) -> Option<Self> {
//!         constmuck::contiguous::from_u8(n, infer!())
//!     }
//!     pub const fn from_array<const N: usize>(input: [u8; N]) -> Option<[Self; N]> {
//!         // `try_opt` returns from `from_array` on `None`,
//!         // because `konst::array::map` allows the passed-in expression
//!         // to return from the surrounding named function.
//!         Some(array::map!(input, |n| try_opt!(Self::from_int(n))))
//!     }
//! }
//!
//!
//! ```
//!
//! ### Wrapper
//!
//! This example demonstrates a type that wraps a `[T]`, constructed by reference.
//!
//! ```rust
//!
//! use constmuck::TransparentWrapper;
//! use constmuck::infer_tw;
//!
//! fn main() {
//!     const SLICE: &[u32] = &[3, 5, 8, 13, 21];
//!     const WRAPPER: &SliceWrapper<u32> = SliceWrapper::new(SLICE);
//!
//!     const SUM: u64 = WRAPPER.sum();
//!     assert_eq!(SUM, 50);
//!
//!     const FIRST_EVEN: Option<(usize, u32)> = WRAPPER.find_first_even();
//!     assert_eq!(FIRST_EVEN, Some((2, 8)));
//! }
//!
//! #[repr(transparent)]
//! # #[derive(Debug, PartialEq, Eq)]
//! # /*
//! #[derive(Debug, PartialEq, Eq, TransparentWrapper)]
//! # */
//! pub struct SliceWrapper<T>(pub [T]);
//!
//! # unsafe impl<T> TransparentWrapper<[T]> for SliceWrapper<T> {}
//! #
//! impl<T> SliceWrapper<T> {
//!     // Using `constmuck` allows safely defining this function as a `const fn`
//!     pub const fn new(reff: &[T]) -> &Self {
//!         constmuck::wrapper::wrap_ref!(reff, infer_tw!())
//!     }
//! }
//!
//! impl SliceWrapper<u32> {
//!     pub const fn sum(&self) -> u64 {
//!         let mut sum = 0;
//!         konst::for_range!{i in 0..self.0.len() =>
//!             sum += self.0[i] as u64;
//!         }
//!         sum
//!     }
//!     pub const fn find_first_even(&self) -> Option<(usize, u32)> {
//!         konst::for_range!{i in 0..self.0.len() =>
//!             if self.0[i] % 2 == 0 {
//!                 return Some((i, self.0[i]));
//!             }
//!         }
//!         None
//!     }
//!     
//! }
//!
//!
//! ```
//!
//!
//! # Features
//!
//! These are the features of this crate:
//!
//! - `"derive"`(disabled by default):
//! enables `bytemuck`'s `"derive"` feature and reexports its derives.
//!
//! - `"debug_checks"`(disabled by default):
//! Enables [`additional checks`](#additional-checks)
//!
//! # Additional checks
//!
//! The `"debug_checks"` feature enables additional checks,
//! all of which cause panics when it'd have otherwise been Undefined Behavior
//! (caused by unsound `unsafe impl`s or calling `unsafe` constructor functions).
//!
//! ##### Size checks
//!
//! Functions that transmute values check that the value doesn't change size when transmuted.
//!
//! Functions that transmute references check that referent (the `T` in `&T`)
//! doesn't change size when transmuted.
//!
//! Macros that transmute references check that reference doesn't change size when transmuted
//! (ie: transmuting `&[u8]` to `&u8`).
//! Macros have weaker checking than functions because they allow references to `!Sized` types
//! (eg: `str`, `[u8]`, `dyn Trait`),
//! if you're only casting references to `Sized` types it's better to use the function equivalents.
//!
//! ### Alignment checks
//!
//! All the *functions* in the [`wrapper`] module check that the alignment of the
//! `Inner` type parameter is the same as the `Outer` type parameter,
//! in addition to the size checks described in the previous section.
//!
//! ### Contiguous checks
//!
//! The `from_*` functions in the [`contiguous`] module check that the
//! `min_value` of the passed-in `ImplsContiguous` is less than its `max_value`.
//!
//!
//! # No-std support
//!
//! `constmuck` is `#![no_std]`, it can be used anywhere Rust can be used.
//!
//! # Minimum Supported Rust Version
//!
//! `constmuck` requires Rust 1.56.0, because it uses transmute inside const fns.
//!
//!
//! [`bytemuck`]: bytemuck
//! [`konst`]: https://docs.rs/konst/*/konst/index.html
//! [`contiguous`]: ./contiguous/index.html
//! [`wrapper`]: ./wrapper/index.html

#![no_std]

#[macro_use]
mod macros;

pub mod copying;

pub mod contiguous;

mod infer;

mod pod;

mod slice_fns;

mod type_size;

pub mod transmutable;

pub mod wrapper;

mod zeroable;

#[doc(hidden)]
pub mod __priv_utils;

#[doc(no_inline)]
pub use bytemuck::{self, Contiguous, Pod, PodCastError, TransparentWrapper, Zeroable};

pub use crate::{
    contiguous::impls_contiguous::ImplsContiguous,
    copying::impls_copy::ImplsCopy,
    infer::Infer,
    pod::{cast, cast_ref_alt, try_cast, try_cast_ref_alt, ImplsPod},
    slice_fns::{bytes_of, cast_slice_alt, try_cast_slice_alt},
    transmutable::transmutable_into::TransmutableInto,
    type_size::TypeSize,
    wrapper::impls_tw::ImplsTransparentWrapper,
    zeroable::{zeroed, zeroed_array, ImplsZeroable},
};

#[doc(hidden)]
pub mod __ {
    pub use core::mem::size_of;
    pub use core::ops::Range;
}