1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
//! A simple, non-interactive widget for drawing a series of conjoined lines.

use {Color, Colorable, Point, Positionable, Scalar, Sizeable, Theme, Widget};
use graph;
use utils::{vec2_add, vec2_sub};
use widget;
use widget::triangles::Triangle;

pub use super::line::Pattern;
pub use super::line::Style;


/// A simple, non-interactive widget for drawing a series of lines and/or points.
#[derive(Clone, Debug, WidgetCommon_)]
pub struct PointPath<I> {
    /// Some iterator yielding a series of Points.
    pub points: I,
    /// Data necessary and common for all widget builder types.
    #[conrod(common_builder)]
    pub common: widget::CommonBuilder,
    /// Unique styling for the PointPath.
    pub style: Style,
    /// Whether or not the points should be automatically centred to the widget position.
    pub maybe_shift_to_centre_from: Option<Point>,
}

/// State that is unique to the PointPath.
#[derive(Clone, Debug, PartialEq)]
pub struct State {
    /// An owned version of the list of points.
    pub points: Vec<Point>,
}

/// An iterator that triangulates a point path.
#[derive(Clone)]
pub struct Triangles<I> {
    next: Option<Triangle<Point>>,
    prev: Point,
    points: I,
    half_thickness: Scalar,
    cap: widget::line::Cap,
}


impl<I> PointPath<I> {
    /// The same as [**PointPath::new**](./struct.PointPath#method.new) but with th given style.
    pub fn styled(points: I, style: Style) -> Self {
        PointPath {
            points: points,
            common: widget::CommonBuilder::default(),
            style: style,
            maybe_shift_to_centre_from: None,
        }
    }

    /// Build a new default PointPath widget.
    ///
    /// Note that this does *not* automatically set the position of the bounding box for the
    /// widget. It is recommended that you also see the `abs` and `centred` constructors for smart
    /// positioning and layout that automatically infer the position and size of the bounding box.
    /// This method should only be preferred if the user can also specify the correct bounding box
    /// position and size as this will be more efficient than the `abs` or `centred` methods.
    pub fn new(points: I) -> Self {
        PointPath::styled(points, Style::new())
    }

    /// Build a new PointPath whose bounding box is fit to the absolute co-ordinates of the points.
    ///
    /// This requires that the `points` iterator is `Clone` so that we may iterate through and
    /// determine the bounding box of the `points`.
    ///
    /// If you would rather centre the points to the middle of the bounding box, use
    /// [**PointPath::centred**](./struct.PointPath#method.centred) instead.
    pub fn abs(points: I) -> Self
        where I: IntoIterator<Item=Point> + Clone,
    {
        PointPath::abs_styled(points, Style::new())
    }

    /// The same as [**PointPath::abs**](./struct.PointPath#method.abs) but constructs the
    /// **PointPath** with the given style.
    pub fn abs_styled(points: I, style: Style) -> Self
        where I: IntoIterator<Item=Point> + Clone,
    {
        let points_clone = points.clone().into_iter();
        let (xy, dim) = super::bounding_box_for_points(points_clone).xy_dim();
        PointPath::styled(points, style).wh(dim).xy(xy)
    }

    /// Build a new **PointPath** and shift the location of the points so that the centre of their
    /// bounding rectangle lies at the position determined for the **PointPath** widget.
    ///
    /// This is useful if your points simply describe a shape and you want to position them using
    /// conrod's auto-layout or **Positionable** methods.
    ///
    /// If you would rather centre the bounding box to the points, use
    /// [**PointPath::abs**](./struct.PointPath#method.abs) instead.
    pub fn centred(points: I) -> Self
        where I: IntoIterator<Item=Point> + Clone,
    {
        PointPath::centred_styled(points, Style::new())
    }

    /// The same as [**PointPath::centred**](./struct.PointPath#method.centred) but constructs the
    /// **PointPath** with the given style.
    pub fn centred_styled(points: I, style: Style) -> Self
        where I: IntoIterator<Item=Point> + Clone,
    {
        let points_clone = points.clone().into_iter();
        let (xy, dim) = super::bounding_box_for_points(points_clone).xy_dim();
        let mut point_path = PointPath::styled(points, style).wh(dim);
        point_path.maybe_shift_to_centre_from = Some(xy);
        point_path
    }

    /// The thickness or width of the **PointPath**'s lines.
    ///
    /// Use this instead of `Positionable::width` for the thickness of the `Line`, as `width` and
    /// `height` refer to the dimensions of the bounding rectangle.
    pub fn thickness(mut self, thickness: Scalar) -> Self {
        self.style.set_thickness(thickness);
        self
    }

    /// Make a Solid line.
    pub fn solid(mut self) -> Self {
        self.style.set_pattern(Pattern::Solid);
        self
    }

    /// Make a line with a Dashed pattern.
    pub fn dashed(mut self) -> Self {
        self.style.set_pattern(Pattern::Dashed);
        self
    }

    /// Make a line with a Dotted pattern.
    pub fn dotted(mut self) -> Self {
        self.style.set_pattern(Pattern::Dotted);
        self
    }
}


impl<I> Widget for PointPath<I>
    where I: IntoIterator<Item=Point>,
{
    type State = State;
    type Style = Style;
    type Event = ();

    fn init_state(&self, _: widget::id::Generator) -> Self::State {
        State {
            points: Vec::new(),
        }
    }

    fn style(&self) -> Self::Style {
        self.style.clone()
    }

    fn is_over(&self) -> widget::IsOverFn {
        is_over_widget
    }

    /// Update the state of the Line.
    fn update(self, args: widget::UpdateArgs<Self>) -> Self::Event {
        use utils::{iter_diff, IterDiff};
        let widget::UpdateArgs { rect, state, .. } = args;
        let PointPath { points, maybe_shift_to_centre_from, .. } = self;

        // A function that compares the given points iterator to the points currently owned by
        // `State` and updates only if necessary.
        fn update_points<I>(state: &mut widget::State<State>, points: I)
            where I: IntoIterator<Item=Point>,
        {
            match iter_diff(&state.points, points) {
                Some(IterDiff::FirstMismatch(i, mismatch)) => state.update(|state| {
                    state.points.truncate(i);
                    state.points.extend(mismatch);
                }),
                Some(IterDiff::Longer(remaining)) =>
                    state.update(|state| state.points.extend(remaining)),
                Some(IterDiff::Shorter(total)) =>
                    state.update(|state| state.points.truncate(total)),
                None => (),
            }
        }

        match maybe_shift_to_centre_from {
            Some(original) => {
                let xy = rect.xy();
                let difference = vec2_sub(xy, original);
                update_points(state, points.into_iter().map(|point| vec2_add(point, difference)))
            },
            None => update_points(state, points),
        }
    }

}

impl<I> Colorable for PointPath<I> {
    fn color(mut self, color: Color) -> Self {
        self.style.set_color(color);
        self
    }
}


/// Triangulate a point path.
///
/// Returns `None` if the given iterator yields less than one point.
pub fn triangles<I>(points: I, cap: widget::line::Cap, thickness: Scalar)
    -> Option<Triangles<I::IntoIter>>
    where I: IntoIterator<Item=Point>,
{
    let mut points = points.into_iter();
    let first = match points.next() {
        Some(point) => point,
        None => return None,
    };
    Some(Triangles {
        next: None,
        prev: first,
        points: points,
        half_thickness: thickness / 2.0,
        cap: cap,
    })
}

impl<I> Iterator for Triangles<I>
    where I: Iterator<Item=Point>,
{
    type Item = Triangle<Point>;
    fn next(&mut self) -> Option<Self::Item> {
        if let Some(triangle) = self.next.take() {
            return Some(triangle);
        }
        self.points.next().map(|point| {
            let (a, b) = (self.prev, point);
            self.prev = point;
            let tris = widget::line::triangles(a, b, self.half_thickness);
            self.next = Some(tris[1]);
            tris[0]
        })
    }
}

/// Returns whether or not the given point `p` lies over the `PointPath` described by the given
/// points, line cap and thickness.
pub fn is_over<I>(points: I, cap: widget::line::Cap, thickness: Scalar, p: Point) -> bool
where
    I: IntoIterator<Item=Point>,
{
    triangles(points, cap, thickness).map(|ts| widget::triangles::is_over(ts, p)).unwrap_or(false)
}

/// The function to use for picking whether a given point is over the point path.
pub fn is_over_widget(widget: &graph::Container, point: Point, theme: &Theme) -> widget::IsOver {
    widget
        .state_and_style::<State, Style>()
        .map(|widget| {
            let cap = widget.style.get_cap(theme);
            let thickness = widget.style.get_thickness(theme);
            is_over(widget.state.points.iter().cloned(), cap, thickness, point)
        })
        .unwrap_or_else(|| widget.rect.is_over(point))
        .into()
}