1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
#![deny(missing_docs)]
#![deny(warnings)]
#![cfg_attr(not(feature = "alloc"), no_std)]

//! A crate with a few single-typed arenas that work exclusively with indexes.
//! The indexes are sized with the arena. This can reduce memory footprint when
//! changing pointers to indices e.g. on 64-bit systems.
//!
//! The arenas use a variant of "branded indices": The indices contain an
//! invariant lifetime tag that binds them to their respective arena so you
//! cannot mix up two arenas by accident. Unlike the
//! [indexing](https://crates.io/crates/indexing) crate, this generates the
//! type tags from unique mutable borrows of unit tuples without requiring a
//! closure. This allows us to store indices within objects that we put into
//! the arena, which is a boon to things like graph data structures.
//!
//! The lifetime tags make it impossible to share an arena via an `Arc`, but
//! one can use [`crossbeam-utils`](https://docs.rs/crossbeam-utils)' scoped
//! threads to work around this limitation. See `examples/threads.rs` for a
//! working example.
//!
//! Use the [`mk_arena!`]/[`mk_tiny_arena!`]/[`mk_nano_arena!`] macros to
//! create an arena, then `add` or `try_add` items to it and index it with
//! `arena[idx]`.
//!
//! # Examples
//!
//! ```
//!# use compact_arena::mk_nano_arena;
//! mk_nano_arena!(arena);
//! let idx = arena.add(1usize);
//! assert_eq!(1, arena[idx]);
//! ```
//!
//! You can work with multiple arenas:
//!
//! ```
//!# #[allow(dead_code)]
//!# use compact_arena::mk_nano_arena;
//! mk_nano_arena!(a);
//! mk_nano_arena!(b);
//! ..
//!# ; a.add(1u32); b.add(1u32);
//! ```
//!
//! The compiler gives you a type error if you mix up arenas:
//!
//! ```compile_fail
//!# use compact_arena::mk_nano_arena;
//! mk_nano_arena!(a);
//! mk_nano_arena!(b);
//! let i = a.add(1usize);
//! let _ = b[i];
//! ```
//!
//! The indices should not be able to escape the block with the `mk_*arena` call
//!
//! ```compile_fail
//!# use compact_arena::mk_tiny_arena;
//! let idx = { mk_tiny_arena!(arena); arena.add(1usize) };
//! ```
//!
//! Also, arenas may not be instantiated recursively:
//!
//! ```compile_fail
//!# use compact_arena::{mk_nano_arena, Idx8};
//! fn recursive(idx: Option<Idx8<'_>>) {
//!     mk_nano_arena!(arena); // `tag` does not live long enough
//!     if let Some(idx) = idx {
//!         assert_eq!("hello", arena[idx]);
//!     } else {
//!         recursive(Some(arena.add("hello")));
//!     }
//! }
//! recursive(None);
//! ```
//!
//! The [`SmallArena`] type keeps its storage in a `Vec` that may be useful to
//! reuse. For that reason we have the [`recycle_arena!`] macro. There is no
//! variant of this for the [`Tinyarena`] and [`NanoArena`] types, which store
//! their items inline.
//!
//! [`mk_arena!`]: macro.mk_arena.html
//! [`recycle_arena!`]: macro.recycle_arena.html
//! [`mk_tiny_arena!`]: macro.mk_tiny_arena.html
//! [`mk_nano_arena!`]: macro.mk_nano_arena.html
//! [`SmallArena`]: struct.SmallArena.html
//! [`TinyArena`]: struct.TinyArena.html
//! [`NanoArena`]: struct.NanoArena.html

use core::fmt::{Debug, Display, Formatter, Result as FmtResult};
use core::marker::PhantomData;
use core::mem::{self, MaybeUninit};
use core::ops::{Index, IndexMut};
use core::ptr;
#[cfg(feature = "alloc")]
use std::error::Error;

/// This is one part of the secret sauce that ensures that indices from
/// different arenas cannot be mixed. You should never need to use this type in
/// your code.
#[derive(Copy, Clone, PartialOrd, PartialEq, Eq)]
pub struct InvariantLifetime<'a>(PhantomData<fn(&'a ()) -> &'a ()>);

/// Create an invariant lifetime. This is one part of the secret sauce that
/// ensures that indices from different arenas cannot be mixed. You should
/// never need to use this type in your code.
pub fn invariant_lifetime<'tag>() -> InvariantLifetime<'tag> {
    InvariantLifetime(PhantomData)
}

/// Fix an invariant lifetime to a `tag` value.
#[macro_export]
macro_rules! tagged {
    ($tag:ident, $stmt:stmt) => {
        let $tag = $crate::invariant_lifetime();
        let _guard;
        $stmt;
        // this doesn't make it to MIR, but ensures that borrowck will not
        // unify the lifetimes of two macro calls by binding the lifetime to
        // drop scope
        if false {
            struct Guard<'tag>(&'tag $crate::InvariantLifetime<'tag>);
            impl<'tag> ::core::ops::Drop for Guard<'tag> {
                fn drop(&mut self) {}
            }
            _guard = Guard(&$tag);
        }
    };
}

/// An index into the arena. You will not directly use this type, but one of
/// the aliases this crate provides (`Idx32`, `Idx16` or `Idx8`).
///
/// The only way to get an index into an arena is to `add` a value to it. With
/// an `Idx` you can index or mutably index into the arena to observe or mutate
/// the value.
#[derive(Copy, Clone, PartialOrd, PartialEq, Eq)]
pub struct Idx<'tag, I: Copy + Clone> {
    index: I,
    tag: InvariantLifetime<'tag>,
}

/// The index type for a small arena is 32 bits large. You will usually get the
/// index from the arena and use it by indexing, e.g. `arena[index]`.
///
/// # Examples
///
/// ```
///# use {compact_arena::Idx32, core::mem::size_of};
/// assert_eq!(size_of::<Idx32<'_>>(), size_of::<u32>());
/// ```
pub type Idx32<'tag> = Idx<'tag, u32>;

/// The index type for a tiny arena is 16 bits large. You will usually get the
/// index from the arena and use it by indexing, e.g. `arena[index]`.
///
/// # Examples:
///
/// ```
///# use {compact_arena::Idx16, core::mem::size_of};
/// assert_eq!(size_of::<Idx16<'_>>(), size_of::<u16>());
/// ```
pub type Idx16<'tag> = Idx<'tag, u16>;

/// The index type for a nano arena is 8 bits large. You will usually get the
/// index from the arena and use it by indexing, e.g. `arena[index]`.
///
/// # Examples:
///
/// ```
///# use {compact_arena::Idx8, core::mem::size_of};
/// assert_eq!(size_of::<Idx8<'_>>(), size_of::<u8>());
/// ```
pub type Idx8<'tag> = Idx<'tag, u8>;

/// An error type that gets returned on trying to add an element to an already
/// full arena. It contains the element so you can reuse it
pub struct CapacityExceeded<T>(T);

impl<T> CapacityExceeded<T> {
    /// Consumes self and returns the contained value.
    pub fn into_value(self) -> T {
        self.0
    }
}

impl<T> Debug for CapacityExceeded<T> {
    fn fmt(&self, f: &mut Formatter) -> FmtResult {
        write!(f, "Capacity Exceeded")
    }
}

impl<T> Display for CapacityExceeded<T> {
    fn fmt(&self, f: &mut Formatter) -> FmtResult {
        write!(f, "Capacity Exceeded")
    }
}

#[cfg(feature = "alloc")]
impl<T> Error for CapacityExceeded<T> {
    fn description(&self) -> &str {
        "Capacity exceeded"
    }
}

/// A "Small" arena based on a resizable slice (i.e. a `Vec`) that can be
/// indexed with 32-bit `Idx32`s. This can help reduce memory overhead when
/// using many pointer-heavy objects on 64-bit systems.
///
/// You can obtain an instance of this type by calling `mk_arena`.
#[cfg(feature = "alloc")]
pub struct SmallArena<'tag, T> {
    tag: InvariantLifetime<'tag>,
    // TODO: Use a custom structure, forbid resizing over 2G items
    data: Vec<T>,
}

/// Run code using an arena. The indirection through the macro is required
/// to safely bind the indices to the arena. The macro takes an identifier that
/// will be bound to the `&mut Arena<_, _>` and an expression that will be
/// executed within a block where the arena is instantiated. The arena will be
/// dropped afterwards.
///
/// # Examples
///
/// ```
///# use compact_arena::mk_arena;
/// mk_arena!(arena);
/// let half = arena.add(21);
/// assert_eq!(42, arena[half] + arena[half]);
/// ```
///
/// You can also specify an initial capacity after the arena identifier:
///
/// ```
///# #[allow(dead_code)]
///# use compact_arena::mk_arena;
/// mk_arena!(arena, 65536);
///# arena.add(2usize);
/// ..
///# ;
/// ```
///
/// The capacity will be extended automatically, so `new_arena!(0)` creates a
/// valid arena with initially zero capacity that will be extended on the first
/// `add`.
#[cfg(feature = "alloc")]
#[macro_export]
macro_rules! mk_arena {
    ($name:ident) => {
        $crate::mk_arena!($name, 128 * 1024)
    };
    ($name:ident, $cap:expr) => {
		$crate::tagged!(tag, let mut $name = unsafe {
			// this is not per-se unsafe but we need it to be public and
			// calling it with a non-unique `tag` would allow arena mixups,
			// which may introduce UB in `Index`/`IndexMut`
			$crate::SmallArena::new(tag, $cap)
		});
	};
}

/// Run a piece of code inside an arena
///
/// This may make it easier to see the scope (and was the old interface before
/// I managed to fix the soundness problems).
#[cfg(feature = "alloc")]
#[macro_export]
macro_rules! in_arena {
    ($name:ident, $e:expr) => {
        $crate::mk_arena!(arena);
        let $name = &mut arena;
        $e
    };
    ($name:ident / $cap:expr, $e:expr) => {
        $crate::mk_arena!(arena, $cap);
        let $name = &mut arena;
        $e
    };
}

/// Empty the arena, and set the binding to a new arena using the storage of
/// the argument.
///
/// # Examples
///
/// ```
///# use compact_arena::{mk_arena, recycle_arena};
/// mk_arena!(a, 5);
/// let i = a.add(22u32);
/// recycle_arena!(a);
/// let x = a.add(42);
/// // i is no longer alive
/// ```
#[cfg(feature = "alloc")]
#[macro_export]
macro_rules! recycle_arena {
    ($arena:ident) => {
		$crate::tagged!(
			tag,
			let mut $arena = {
				let mut data = $arena.into_inner();
				// be sure to delete the original data, it can no longer be
				// referenced anyway
				data.clear();
				// this is not per-se unsafe but we need it to be public and
				// calling it with a non-unique `tag` would allow arena mixups,
				// which may introduce UB in `Index`/`IndexMut`
				unsafe { $crate::SmallArena::from_vec(tag, data) }
			}
        );
    };
}

/// Create a tiny arena. The indirection through this macro is required
/// to bind the indices to the arena.
///
/// # Examples
///
/// ```
///# use compact_arena::mk_tiny_arena;
/// mk_tiny_arena!(arena);
/// let idx = arena.add(1usize);
/// assert_eq!(1, arena[idx]);
/// ```
#[macro_export]
macro_rules! mk_tiny_arena {
    ($name:ident) => {
        $crate::tagged!(tag,
			let mut $name = unsafe {
				// this is not per-se unsafe but we need it to be public and
				// calling it with a non-unique `tag` would allow arena mixups,
				// which may introduce UB in `Index`/`IndexMut`
				$crate::TinyArena::new(tag)
			}
		)
    };
}

/// Run code using a tiny arena. The indirection through this macro is
/// required to bind the indices to the arena.
///
/// # Examples
///
/// ```
///# use compact_arena::in_tiny_arena;
/// in_tiny_arena!(arena, {
///     let idx = arena.add(1usize);
///     assert_eq!(1, arena[idx]);
/// });
/// ```
#[macro_export]
macro_rules! in_tiny_arena {
    ($arena:ident, $e:expr) => {{
        $crate::mk_tiny_arena!(arena);
        let $arena = &mut arena;
        $e
    }};
}

/// Create a tiny arena. The indirection through this macro is required
/// to bind the indices to the arena.
///
/// # Examples
///
/// ```
///# use compact_arena::mk_nano_arena;
/// mk_nano_arena!(arena);
/// let idx = arena.add(1usize);
/// assert_eq!(1, arena[idx]);
/// ```
#[macro_export]
macro_rules! mk_nano_arena {
    ($name:ident) => {
        $crate::tagged!(
			tag,
			let mut $name = unsafe {
				// this is not per-se unsafe but we need it to be public and
				// calling it with a non-unique `tag` would allow arena mixups,
				// which may introduce UB in `Index`/`IndexMut`
				$crate::NanoArena::new(tag)
			}
        );
    };
}

/// Run code using a nano arena. The indirection through the macro is
/// required to bind the indices to the arena.
///
/// # Examples
///
/// ```
///# use compact_arena::in_nano_arena;
/// in_nano_arena!(arena, {
///     let idx = arena.add(1usize);
///     assert_eq!(1, arena[idx]);
/// });
/// ```
#[macro_export]
macro_rules! in_nano_arena {
    ($arena:ident, $e:expr) => {{
        $crate::mk_nano_arena!(arena);
        let $arena = &mut arena;
        $e
    }};
}

#[cfg(feature = "alloc")]
impl<'tag, T> SmallArena<'tag, T> {
    /// create a new SmallArena. Don't do this manually. Use the
    /// [`in_arena`] macro instead.
    ///
    /// # Safety
    ///
    /// The whole tagged indexing trick relies on the `'tag` you give to this
    /// constructor. You must never use this value in another arena, lest you
    /// might be able to mix up the indices of the two, which could lead to
    /// out of bounds access and thus **Undefined Behavior**!
    pub unsafe fn new(tag: InvariantLifetime<'tag>, capacity: usize) -> Self {
        SmallArena {
            tag,
            data: Vec::with_capacity(capacity),
        }
    }

    /// move a `Vec` into a SmallArena. This is unlikely to be useful to you,
    /// it's an implementation detail of the `recycle_arena!` macro.
    pub unsafe fn from_vec(tag: InvariantLifetime<'tag>, data: Vec<T>) -> Self {
        SmallArena { tag, data }
    }

    /// consume the arena and get the data out
    pub fn into_inner(self) -> Vec<T> {
        self.data
    }

    /// Add an item to the arena, get an index or CapacityExceeded back.
    #[inline]
    pub fn try_add(&mut self, item: T) -> Result<Idx32<'tag>, CapacityExceeded<T>> {
        let i = self.data.len();
        if i == (core::u32::MAX as usize) {
            return Err(CapacityExceeded(item));
        }
        self.data.push(item);
        Ok(Idx {
            index: (i as u32),
            tag: self.tag,
        })
    }

    /// Add an item to the arena, get an index back.
    #[inline]
    pub fn add(&mut self, item: T) -> Idx32<'tag> {
        self.try_add(item).unwrap()
    }
}

#[cfg(feature = "alloc")]
impl<'tag, T> Index<Idx32<'tag>> for SmallArena<'tag, T> {
    type Output = T;

    /// Gets an immutable reference to the value at this index.
    #[inline]
    fn index(&self, i: Idx32<'tag>) -> &T {
        debug_assert!((i.index as usize) < self.data.len());
        // we can use unchecked indexing here because branding the indices with
        // the arenas lifetime ensures that the index is always valid & within
        // bounds
        unsafe { &self.data.get_unchecked(i.index as usize) }
    }
}

#[cfg(feature = "alloc")]
impl<'tag, T> IndexMut<Idx32<'tag>> for SmallArena<'tag, T> {
    /// Gets a mutable reference to the value at this index.
    #[inline]
    fn index_mut(&mut self, i: Idx32<'tag>) -> &mut T {
        debug_assert!((i.index as usize) < self.data.len());
        // we can use unchecked indexing here because branding the indices with
        // the arenas lifetime ensures that the index is always valid & within
        // bounds
        unsafe { self.data.get_unchecked_mut(i.index as usize) }
    }
}

const TINY_ARENA_ITEMS: u32 = 65536;
const NANO_ARENA_ITEMS: u16 = 256;

type TinyArenaData<T> = [MaybeUninit<T>; TINY_ARENA_ITEMS as usize];

/// A "tiny" arena containing <64K elements.
pub struct TinyArena<'tag, T> {
    tag: InvariantLifetime<'tag>,
    pub(crate) len: u32,
    pub(crate) data: TinyArenaData<T>,
}

impl<'tag, T> TinyArena<'tag, T> {
    /// create a new TinyArena
    pub unsafe fn new(tag: InvariantLifetime<'tag>) -> TinyArena<'tag, T> {
        TinyArena {
            tag,
            data: MaybeUninit::uninit().assume_init(),
            len: 0,
        }
    }

    /// Add an item to the arena, get an index or CapacityExceeded back.
    #[inline]
    pub fn try_add(&mut self, item: T) -> Result<Idx16<'tag>, CapacityExceeded<T>> {
        let i = self.len;
        if i >= TINY_ARENA_ITEMS {
            return Err(CapacityExceeded(item));
        }
        self.data[i as usize] = MaybeUninit::new(item);
        self.len += 1;
        Ok(Idx16 {
            index: i as u16,
            tag: self.tag,
        })
    }

    /// Add an item to the arena, get an index back
    pub fn add(&mut self, item: T) -> Idx16<'tag> {
        self.try_add(item).unwrap()
    }
}

impl<'tag, T> Drop for TinyArena<'tag, T> {
    // dropping the arena drops all values
    fn drop(&mut self) {
        for i in 0..mem::replace(&mut self.len, 0) as usize {
            unsafe {
                ptr::drop_in_place(self.data[i].as_mut_ptr());
            }
        }
    }
}

type NanoArenaData<T> = [MaybeUninit<T>; NANO_ARENA_ITEMS as usize];

/// A "nano" arena containing up to 256 elements.
///
/// You will likely use this via the `mk_nano_arena` macro.
pub struct NanoArena<'tag, T> {
    tag: InvariantLifetime<'tag>,
    pub(crate) len: u16,
    pub(crate) data: NanoArenaData<T>,
}

impl<'tag, T> NanoArena<'tag, T> {
    /// create a new NanoArena. Don't do this manually. Use the
    /// [`mk_nano_arena`] macro instead.
    ///
    /// # Safety
    ///
    /// The whole tagged indexing trick relies on the `'tag` you give to
    /// this constructor. You must never use this value in another arena,
    /// lest you might be able to mix up the indices of the two, which
    /// could lead to out of bounds access and thus **Undefined Behavior**!
    pub unsafe fn new(tag: InvariantLifetime<'tag>) -> NanoArena<'tag, T> {
        NanoArena {
            tag,
            data: MaybeUninit::uninit().assume_init(),
            len: 0,
        }
    }

    /// Add an item to the arena, get an index or CapacityExceeded back.
    #[inline]
    pub fn try_add(&mut self, item: T) -> Result<Idx8<'tag>, CapacityExceeded<T>> {
        let i = self.len;
        if i >= NANO_ARENA_ITEMS {
            return Err(CapacityExceeded(item));
        }
        self.data[usize::from(i)] = MaybeUninit::new(item);
        self.len += 1;
        Ok(Idx8 {
            index: i as u8,
            tag: self.tag,
        })
    }

    /// Add an item to the arena, get an index back
    pub fn add(&mut self, item: T) -> Idx8<'tag> {
        self.try_add(item).unwrap()
    }
}

impl<'tag, T> Drop for NanoArena<'tag, T> {
    // dropping the arena drops all values
    fn drop(&mut self) {
        for i in 0..mem::replace(&mut self.len, 0) as usize {
            unsafe {
                ptr::drop_in_place(self.data[i].as_mut_ptr());
            }
        }
    }
}

impl<'tag, T> Index<Idx16<'tag>> for TinyArena<'tag, T> {
    type Output = T;

    fn index(&self, i: Idx16<'tag>) -> &T {
        debug_assert!(u32::from(i.index) < self.len);
        // we can use unchecked indexing here because branding the indices with
        // the arenas lifetime ensures that the index is always valid & within
        // bounds
        unsafe { &*self.data.get_unchecked(usize::from(i.index)).as_ptr() }
    }
}

impl<'tag, T> IndexMut<Idx16<'tag>> for TinyArena<'tag, T> {
    fn index_mut(&mut self, i: Idx16<'tag>) -> &mut T {
        debug_assert!(u32::from(i.index) < self.len);
        // we can use unchecked indexing here because branding the indices with
        // the arenas lifetime ensures that the index is always valid & within
        // bounds
        unsafe {
            &mut *self
                .data
                .get_unchecked_mut(usize::from(i.index))
                .as_mut_ptr()
        }
    }
}

impl<'tag, T> Index<Idx8<'tag>> for NanoArena<'tag, T> {
    type Output = T;

    fn index(&self, i: Idx8<'tag>) -> &T {
        debug_assert!(u16::from(i.index) < self.len);
        // we can use unchecked indexing here because branding the indices with
        // the arenas lifetime ensures that the index is always valid & within
        // bounds
        unsafe { &*self.data.get_unchecked(usize::from(i.index)).as_ptr() }
    }
}

impl<'tag, T> IndexMut<Idx8<'tag>> for NanoArena<'tag, T> {
    fn index_mut(&mut self, i: Idx8<'tag>) -> &mut T {
        debug_assert!(u16::from(i.index) < self.len);
        // we can use unchecked indexing here because branding the indices with
        // the arenas lifetime ensures that the index is always valid & within
        // bounds
        unsafe {
            &mut *self
                .data
                .get_unchecked_mut(usize::from(i.index))
                .as_mut_ptr()
        }
    }
}