1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
//! This is a parser combinator library that aims to provide short and consise, but easily readable
//! parser combinators.
//!
//! If you don't know how parser combinators work, I suggest looking at
//! [`nom`](https://github.com/geal/nom) first.
//!
//! This library doesn't use macros, so it is a bit limited for some applications (specifically
//! places where you can use [`map_parser`](Parser::map_parser) are rather limited).
//!
//! It also uses operator overloading for writing parsers that are easy to read and write.
//!
//! Here is one example (I have no clue why almost every closure needs its arguments specified):
//!
//! ```
//! use std::iter;
//! use combinedfun as cf;
//!
//! enum End {
//!     Repeat(String),
//!     Add(usize),
//! }
//!
//! let parser = (
//!     cf::record_while(|c: &char| c.is_digit(10), 1..)
//!     >> (|s: &str| s.parse::<usize>().unwrap())
//!     >> (
//!         -cf::tag(" ")
//!         >> cf::take(..)
//!         >> (|s: &str| End::Repeat(s.to_owned()))
//!         |
//!         -cf::tag("+")
//!         >> cf::record_while(|c: &char| c.is_digit(10), 1..)
//!         >> (|s: &str| End::Add(s.parse::<usize>().unwrap()))
//!     )
//!     >> (|(i, end)| match end {
//!         End::Repeat(s) => (0..i).fold("".to_owned(), |acc, _| acc + &s),
//!         End::Add(j) => (i + j).to_string()
//!     })
//! );
//!
//! assert_eq!(parser.parse("3 abc"), Ok("abcabcabc".to_owned()));
//! assert_eq!(parser.parse("10 x"), Ok("xxxxxxxxxx".to_owned()));
//! assert_eq!(parser.parse("42+123"), Ok("165".to_owned()));
//! assert_eq!(parser.parse("42+abc"), Err(()));
//! assert_eq!(parser.parse("+123"), Err(()));
//! ```

use std::marker::PhantomData;
use std::ops;

pub mod traits;
pub use traits::{AltError, Collection, ConsumeError, EofError, HasEof, NotError, Position, RangeLike, Recordable, SplitFirst, Tag, TagError};

pub mod types;
pub use types::{Index, NoCollection, Pos, Span};

pub mod combinators;

pub mod str_parsers;

#[cfg(test)]
mod tests;

/// This trait has to be implemented for the combinators in [`combinators`](combinators) to provide
/// the basic functionality required for [`Parser`](Parser).
pub trait ParserImpl<I> {
    /// The output type of the parser
    type Output;

    /// The error type of the parser
    type Error;

    /// This runs the parser. It receives an input, returns the input that hasn't been read yet and
    /// the output attached to what was read until that point. If it fails, it returns its error
    /// type.
    fn apply(&self, inp: I) -> Result<(I, Self::Output), Self::Error>;
}

impl<F, I, O, E> ParserImpl<I> for F where F: Fn(I) -> Result<(I, O), E> {
    type Output = O;
    type Error = E;

    fn apply(&self, inp: I) -> Result<(I, O), E> {
        self(inp)
    }
}

/// This type is the one all functionality is built on.
/// 
/// The `F` type argument is the parser implementation, which is usually a function or a combinator
/// from [`combinators`](combinators).
///
/// The `I` type argument is the expected input. If you write parsers, it is advised to make your
/// parser generic over the input, to allow different levels of tracking it, unless the parser
/// makes use of the type directly.
///
/// # Notes
///
/// All repeating combinators simply stop consuming the input if the given range is exceeded
/// (should one be given). The behaviour, should that range be empty or from high to low, is, while
/// not undefined, implementation defined and should not be relied upon.
///
/// Those repeating combinators are (note that the syntactic sugar variant *always* uses
/// [`Vec`](Vec):
///
/// | combinator                                                 | has separator | has range | returns outputs | returns count | syntactic sugar |
/// |------------------------------------------------------------|-----|------------|-----|-----|------|
/// | [`counted_separated`](Parser::counted_separated)           | yes | yes        | yes | yes | none |
/// | [`separated`](Parser::separated)                           | yes | yes        | yes | no  | [`/ sep`](#impl-Div<Parser<F2%2C%20I>>) [`* new_collection`](struct.ElementSeparator#impl-Mul<CG>) [`* range`](struct.WithCollectionGenerator.html#impl-Mul<R>) |
/// | [`const_separated`](Parser::const_separated)               | yes | one number | yes | no  | none |
/// | [`count_separated_within`](Parser::count_separated_within) | yes | yes        | no  | yes | none |
/// | [`count_separated`](Parser::count_separated)               | yes | no         | no  | yes | none |
/// | [`counted_repeat`](Parser::counted_repeat)                 | no  | yes        | yes | yes | none |
/// | [`repeat`](Parser::repeat)                                 | no  | yes        | yes | no  | [`* new_collection`](#impl-Mul<CG>) [`* range`](struct.WithCollectionGenerator.html#impl-Mul<R>) |
/// | [`const_repeat`](Parser::const_repeat)                     | no  | one number | yes | no  | none |
/// | [`count_within`](Parser::count_within)                     | no  | yes        | no  | yes | none |
/// | [`count`](Parser::count)                                   | no  | no         | no  | yes | none |
///
/// Combinators not found as methods:
/// * [`epsilon` or ε](epsilon). Matches nothing, always succeeds.
/// * [`tag`](tag). Requires the input to start with the given subsequence/substring.
/// * [`fail_with`](fail_with). Always fails, generating the error using a closure.
/// * [`fail_with_const`](fail_with_const). Always fails, generating the error using [`Clone`](Clone) on the given argument.
/// * [`eof`](eof). Fails if the input isn't empty.
/// * [`not`](not). Fails if the given parser succeeds, and succeeds if the given parser fails.
/// * [`consume_one_where`](consume_one_where). Consumes the first element/character of the input, if it matches a given condition.
/// * [`consume_while`](consume_while). Consumes elements/characters of the input that match the given condition. Its given a range, which acts like the range given to other repeating combinators.
/// * [`record_while`](record_while). Like [`consume_while`](consume_while), but returns the matched substring.
/// * [`take`](take). Consumes the rest of the input, and returns the matched string.
/// * [`lookahead`](lookahead). Outputs the result of the given parser without consuming it.
/// * [`output`](output). Outputs the output of the given function, or fails if the function returns [`Err`](Err).
pub struct Parser<F, I>(F, PhantomData<fn(I)>);

/// The parser macro allows you to easily write the type of a parser in a return position, using
/// `impl Trait`.
///
/// There are two ways to use it (`I` being the input, `O` the output and `E` the error type):
/// * `parser!(<I, O, E>)` yields `Parser<impl ParserImpl<I, Output = O, Error = E>>`
/// * `parser!(<I, O, E> + 'a)` yields `Parser<impl ParserImpl<I, Output = O, Error = E> + 'a>`
#[macro_export]
macro_rules! parser {
    (<$i:ty, $o:ty, $e:ty> + $lt:tt) => {
        $crate::Parser<impl $crate::ParserImpl<$i, Output = $o, Error = $e> + $lt, $i>
    };
    (<$i:ty, $o:ty, $e:ty>) => {
        $crate::Parser<impl $crate::ParserImpl<$i, Output = $o, Error = $e>, $i>
    };
}

/// Allows debugging a parser. It uses the `dbg!` macro internally, and prints what the parser
/// returned (be it successful or an error). If it was successful, it prints the input before and
/// after the parser was applied.
#[macro_export]
macro_rules! parser_dbg {
    ($parser:expr) => {
        $crate::Parser::map_err(
            $crate::Parser::map_range_and_out(
                $parser,
                |rest, x| dbg!((rest, x)).1
            ),
            |err| dbg!(err)
        )
    }
}

/// Allows helping Rusts type inference by returning an [ε](epsilon) parser with the given type
/// parameters. This is intended to be used with the overloaded operators.
#[macro_export]
macro_rules! parser_hint {
    (<Input = $I:ty, Error = $E:ty>) => {
        -$crate::epsilon::<$I, $E>()
    };
    (<Error = $E:ty, Input = $I:ty>) => {
        parser_hint!(<Input = $I, Error = $E>)
    };
    (<Input = $I:ty>) => {
        parser_hint!(<Input = $I, Error = _>)
    };
    (<Error = $E:ty>) => {
        parser_hint!(<Input = _, Error = $E>)
    };
}

impl<F, I, O, E> Parser<F, I> where F: Fn(I) -> Result<(I, O), E> {
    /// This function allows you to create a new parser. If you wrote your own type which
    /// implements [`ParserImpl`](ParserImpl), use [`Parser::new_generic`](Parser::new_generic).
    pub fn new(func: F) -> Self {
        Self::new_generic(func)
    }
}

impl<F, I, O, E> Parser<F, I> where F: ParserImpl<I, Output = O, Error = E> {
    /// This function allows you to create a new parser. It will not work with type inference for
    /// closures though, so use [`Parser::new`](Parser::new) for those.
    ///
    /// This function only exists to make the type inference for closures work in
    /// [`new`](Parser::new).
    pub fn new_generic(implementation: F) -> Self {
        Parser(implementation, PhantomData)
    }

    /// This returns a new parser, which applies this parser and the given one on the input in that
    /// order, returning a pair of outputs. The syntactic sugar is
    /// [`>>`](#impl-Shr<Parser<F2%2C%20I>>).
    pub fn then<O2, F2>(self, next: Parser<F2, I>) -> parser!(<I, (O, O2), E>)
    where F2: ParserImpl<I, Output = O2, Error = E> {
        self >> next
    }

    /// See [`Parser::then`](Parser::then), this parser returns only the result of the parser which
    /// was given as an argument. The syntactic sugar is
    /// [`>>`](struct.Ignored.html#impl-Shr<Parser<F2%2C%20I>>) together with [`-`](#impl-Neg), see
    /// the [top level documentation](crate).
    pub fn before<O2, F2>(self, main: Parser<F2, I>) -> parser!(<I, O2, E>)
    where F2: ParserImpl<I, Output = O2, Error = E> {
        -self >> main
    }

    /// See [`Parser::then`](Parser::then), this parser returns only the result of this parser. The
    /// syntactic sugar is [`>>`](#impl-Shr<Ignored<F2%2C%20I>>) together with [`-`](#impl-Neg),
    /// see the [top level documentation](crate).
    pub fn followed_by<F2>(self, next: Parser<F2, I>) -> parser!(<I, O, E>)
    where F2: ParserImpl<I, Error = E> {
        self >> -next
    }

    /// This returns a new parser, which tries to apply this parser, and, should this fail,
    /// attempts to apply the one given as an argument. Should that also fail, it'll return an
    /// error. The syntactic sugar is [`|`](#impl-BitOr<Parser<F2%2C%20I>>).
    pub fn or<F2>(self, alt: Parser<F2, I>) -> parser!(<I, O, E>)
    where F2: ParserImpl<I, Output = O, Error = E>, I: Clone, E: AltError<I> {
        self | alt
    }

    /// This returns a new parser, which maps the given function to the result of this parser. This
    /// function returns a [`Result`](Result), so it can lead to the returned parser failing even
    /// if this one didn't. The syntactic sugar is [`>>`](#impl-Shr<MapResult<F2>>) together with
    /// the wrapper type [`MapResult`](MapResult).
    ///
    /// If your function never fails, use [`map`](Parser::map).
    pub fn map_result<O2, F2>(self, f: F2) -> parser!(<I, O2, E>)
    where F2: Fn(O) -> Result<O2, E> {
        self >> MapResult(f)
    }

    /// This returns a new parser, which maps the given function to the result of this parser. The
    /// returned parser fails if this one does, and doesn't fail if this one doesn't. The syntactic
    /// sugar is [`>>`](#impl-Shr<F2>).
    ///
    /// If you want to be able to induce failure, use [`map_result`](Parser::map).
    pub fn map<O2, F2>(self, f: F2) -> parser!(<I, O2, E>)
    where F2: Fn(O) -> O2 {
        self >> f
    }

    /// This returns a new parser, which maps the given function to the error of this parser,
    /// should it fail.
    pub fn map_err<E2, F2>(self, f: F2) -> parser!(<I, O, E2>)
    where F2: Fn(E) -> E2 {
        Parser::new(move |input| self.0.apply(input).map_err(|e| f(e)))
    }

    /// This returns a new parser, which collects a number of occurences which is in the given
    /// range in the [`Collection`](Collection) `C`, and returns this collection and the number of
    /// seen occurences in a pair.
    ///
    /// Should this be impossible, it fails.
    ///
    /// Please read the notes in the documentation for [this type](Parser).
    pub fn counted_separated<C, F2, R: RangeLike, CG>(self, range: R, by: Parser<F2, I>, collection_generator: CG) -> parser!(<I, (C, usize), E>)
    where F2: ParserImpl<I, Error = E>, C: Collection<Item = O>, I: Clone, CG: Fn() -> C {
        Parser::new_generic(combinators::CountedSeparated {
            main_parser: self.0,
            separator: by.0,
            range,
            collection_generator,
        })
    }

    /// This returns a new parser, which collects a number of occurences which is in the given
    /// range in the [`Collection`](Collection) `C`, and returns this collection.
    ///
    /// Should this be impossible, it fails.
    ///
    /// Please read the notes in the documentation for [this type](Parser).
    pub fn separated<C, F2, R: RangeLike, CG>(self, range: R, by: Parser<F2, I>, collection_generator: CG) -> parser!(<I, C, E>)
    where F2: ParserImpl<I, Error = E>, C: Collection<Item = O>, I: Clone, CG: Fn() -> C {
        self / by * collection_generator * range
    }

    /// This returns a new parser, which collects a number of occurences which is equal to the
    /// given argument in the [`Collection`](Collection) `C`, and returns this collection.
    ///
    /// Should this be impossible, it fails.
    ///
    /// Please read the notes in the documentation for [this type](Parser).
    pub fn const_separated<C, F2, CG>(self, n: usize, by: Parser<F2, I>, collection_generator: CG) -> parser!(<I, C, E>)
    where F2: ParserImpl<I, Error = E>, C: Collection<Item = O>, I: Clone, CG: Fn() -> C {
        self / by * collection_generator * (n..=n)
    }

    /// This returns a new parser, which counts the number of occurences which has to be within the
    /// given range, and returns that number.
    ///
    /// It only consumes the minimum of the amount of occurences there are and the upper bound, if
    /// there are less occurences than the lower bound, the returned parser fails.
    ///
    /// Please read the notes in the documentation for [this type](Parser).
    pub fn count_separated_within<R: RangeLike, F2>(self, range: R, by: Parser<F2, I>) -> parser!(<I, usize, E>)
    where F2: ParserImpl<I, Error = E>, I: Clone {
        self.counted_separated(range, by, NoCollection::new).map(|(_, count)| count)
    }

    /// This returns a new parser, which counts the number of occurences, and returns that number.
    ///
    /// Please read the notes in the documentation for [this type](Parser).
    pub fn count_separated<F2>(self, by: Parser<F2, I>) -> parser!(<I, usize, E>)
    where F2: ParserImpl<I, Error = E>, I: Clone {
        self.count_separated_within(.., by)
    }

    /// [`counted_separated`](Parser::counted_separated) without a separator.
    ///
    /// Please read the notes in the documentation for [this type](Parser).
    pub fn counted_repeat<C, R: RangeLike, CG>(self, range: R, collection_generator: CG) -> parser!(<I, (C, usize), E>)
    where C: Collection<Item = O>, I: Clone, CG: Fn() -> C {
        self.counted_separated(range, epsilon(), collection_generator)
    }

    /// [`separated`](Parser::separated) without a separator.
    ///
    /// Please read the notes in the documentation for [this type](Parser).
    pub fn repeat<C, R: RangeLike, CG>(self, range: R, collection_generator: CG) -> parser!(<I, C, E>)
    where C: Collection<Item = O>, I: Clone, CG: Fn() -> C {
        self * collection_generator * range
    }

    /// [`const_separated`](Parser::const_separated) without a separator.
    ///
    /// Please read the notes in the documentation for [this type](Parser).
    pub fn const_repeat<C, CG>(self, n: usize, collection_generator: CG) -> parser!(<I, C, E>)
    where C: Collection<Item = O>, I: Clone, CG: Fn() -> C {
        self * collection_generator * (n..=n)
    }

    /// [`count_separated_within`](Parser::count_separated_within) without a separator.
    ///
    /// Please read the notes in the documentation for [this type](Parser).
    pub fn count_within<R: RangeLike>(self, range: R) -> parser!(<I, usize, E>)
    where I: Clone {
        self.counted_repeat(range, NoCollection::new).map(|(_, count)| count)
    }

    /// [`count_separated`](Parser::counted_separated) without a separator.
    ///
    /// Please read the notes in the documentation for [this type](Parser).
    pub fn count(self) -> parser!(<I, usize, E>)
    where I: Clone {
        self.count_within(..)
    }

    /// This returns a parser which attempts using this parser, wrapping the result in
    /// [`Some`](Some). If this parser fails, [`None`](None) is returned and no input is consumed.
    pub fn maybe(self) -> parser!(<I, Option<O>, E>)
    where I: Clone {
        self | ()
    }

    /// This returns a parser which runs this parser, yielding the range of input that this parser
    /// consumed. It returns error should the inner parser fail.
    pub fn record(self) -> parser!(<I, I::Output, E>)
    where I: Clone + Recordable {
        Parser::new(move |inp: I| {
            let old = inp.clone();
            self.0.apply(inp).map(|(left, _)| (left.clone(), old.record(left)))
        })
    }

    /// This converts the error to another one using [`.into`](Into::into), should this parser
    /// fail.
    pub fn convert_err<E2>(self) -> parser!(<I, O, E2>)
    where E2: From<E> {
        self.map_err(E2::from)
    }

    /// This calls the given function with the input left before and after this parser was run,
    /// together with the result of running it. The output of the resulting parser is the output of
    /// that function.
    pub fn map_range_and_out<O2, F2>(self, f: F2) -> parser!(<I, O2, E>)
    where F2: Fn((&I, &I), O) -> O2, I: Clone {
        Parser::new(move |inp: I| {
            let inp_clone = inp.clone();
            self.0.apply(inp).map(|(left, out)| {
                let out = f((&inp_clone, &left), out);
                (left, out)
            })
        })
    }

    /// This runs a parser based on the output of this parser.
    ///
    /// Note that the returned parser has to have a *one* type, you can achieve this (if your
    /// parser doesn't just use the output for ranges or in closures) by defining those parsers as
    /// standalone functions.
    pub fn map_parser<O2, F2, F3>(self, f: F2) -> parser!(<I, O2, E>)
    where F2: Fn(O) -> Parser<F3, I>, F3: ParserImpl<I, Output = O2, Error = E> {
        Parser::new(move |inp: I| {
            let (left, first_out) = self.0.apply(inp)?;
            f(first_out).0.apply(left)
        })
    }

    /// Borrows this parser, allowing it to be combined with other parsers without being moved.
    pub fn borrowed<'a>(&'a self) -> parser!(<I, O, E> + 'a) {
        Parser::new(move |inp| self.0.apply(inp))
    }

    /// Parses as far as it can parse. This is just a wrapper around
    /// [`ParserImpl::apply`](ParserImpl::apply).
    ///
    /// See that function for more documentation.
    pub fn parse_partial(&self, input: I) -> Result<(I, O), E> {
        self.0.apply(input)
    }

    /// Parses the whole input. Should this parser not consume it, an approriate error is returned.
    pub fn parse(&self, input: I) -> Result<O, E>
    where I: HasEof, E: EofError<I> {
        self.borrowed().followed_by(eof()).parse_partial(input).map(|(_, o)| o)
    }
}

/// A shortcut for parsers that are defined by functions.
pub type FnParser<I, O, E> = Parser<fn(input: I) -> Result<(I, O), E>, I>;

/// Creates an [`FnParser`](FnParser) from a function.
pub fn f<I, O, E>(func: fn(I) -> Result<(I, O), E>) -> FnParser<I, O, E> {
    Parser::new(func)
}

/// This type is used to make the syntactic sugar work. It's observed if you put a minus in front
/// of a [`Parser`](Parser) (see [`-`](struct.Parser.html#impl-Neg)).
///
/// If this is prepended (using [`>>`](#impl-Shr<Parser<F2%2C%20I>>) to a parser, it's the
/// equivalent to calling [`Parser::before`](Parser::before).
///
/// If this is appended (using [`>>`](struct.Parser.html#impl-Shr<Ignored<F2%2C%20I>>) to a parser,
/// it's the equivalent to calling [`Parser::followed_by`](Parser::followed_by).
///
/// If this is appended (using [`>>`](#impl-Shr<Ignored<F2%2C%20I>>) to another `Ignored`, a new
/// `Ignored` is returned.
pub struct Ignored<F, I>(Parser<F, I>);

impl<F, I> ops::Neg for Parser<F, I> {
    type Output = Ignored<F, I>;

    fn neg(self) -> Ignored<F, I> {
        Ignored(self)
    }
}

impl<F1, F2, I> ops::Shr<Parser<F2, I>> for Parser<F1, I> where F1: ParserImpl<I>, F2: ParserImpl<I, Error = F1::Error> {
    type Output = Parser<combinators::Then<F1, F2>, I>;

    fn shr(self, next: Parser<F2, I>) -> Self::Output {
        Parser::new_generic(combinators::Then(self.0, next.0))
    }
}

impl<F1, F2, I> ops::Shr<Ignored<F2, I>> for Parser<F1, I> where F1: ParserImpl<I>, F2: ParserImpl<I, Error = F1::Error> {
    type Output = Parser<combinators::MapLeft<combinators::Then<F1, F2>>, I>;

    fn shr(self, next: Ignored<F2, I>) -> Self::Output {
        Parser::new_generic(combinators::MapLeft(combinators::Then(self.0, (next.0).0)))
    }
}

impl<F1, F2, I> ops::Shr<Parser<F2, I>> for Ignored<F1, I> where F1: ParserImpl<I>, F2: ParserImpl<I, Error = F1::Error> {
    type Output = Parser<combinators::MapRight<combinators::Then<F1, F2>>, I>;

    fn shr(self, next: Parser<F2, I>) -> Self::Output {
        Parser::new_generic(combinators::MapRight(combinators::Then((self.0).0, next.0)))
    }
}

impl<F1, F2, I> ops::Shr<Ignored<F2, I>> for Ignored<F1, I> where F1: ParserImpl<I>, F2: ParserImpl<I, Error = F1::Error> {
    type Output = Ignored<combinators::MapRight<combinators::Then<F1, F2>>, I>;

    fn shr(self, next: Ignored<F2, I>) -> Self::Output {
        Ignored(self >> next.0)
    }
}

impl<F1, F2, I, O> ops::Shr<F2> for Parser<F1, I> where F1: ParserImpl<I>, F2: (Fn(F1::Output) -> O) {
    type Output = Parser<combinators::Map<F1, F2>, I>;

    fn shr(self, map: F2) -> Self::Output {
        Parser::new_generic(combinators::Map(self.0, map))
    }
}

/// This wrapper can be used to map to a [`Result`](Result) instead of mapping to the output
/// without being able to fail the parser.
pub struct MapResult<F>(pub F);

impl<F1, F2, I, O> ops::Shr<MapResult<F2>> for Parser<F1, I> where F1: ParserImpl<I>, F2: Fn(F1::Output) -> Result<O, F1::Error> {
    type Output = Parser<combinators::MapResult<F1, F2>, I>;

    fn shr(self, map: MapResult<F2>) -> Self::Output {
        Parser::new_generic(combinators::MapResult(self.0, map.0))
    }
}

impl<F1, F2, I> ops::BitOr<Parser<F2, I>> for Parser<F1, I> where F1: ParserImpl<I>, F2: ParserImpl<I, Output = F1::Output, Error = F1::Error>, I: Clone, F1::Error: AltError<I> {
    type Output = Parser<combinators::Or<F1, F2>, I>;

    fn bitor(self, or: Parser<F2, I>) -> Self::Output {
        Parser::new_generic(combinators::Or(self.0, or.0))
    }
}

impl<F, I> ops::BitOr<()> for Parser<F, I> where F: ParserImpl<I>, I: Clone {
    type Output = WithManyCombinator<I, fn() -> Option<F::Output>, InclusiveUsizeRange, F, combinators::Epsilon<F::Error>>;

    fn bitor(self, _: ()) -> Self::Output {
        fn return_none<T>() -> Option<T> {
            None
        }

        self * (return_none as fn() -> Option<F::Output>) * (0..=1)
    }
}

/// This type is used to make the syntactic sugar work. It's observed if you "divide" one
/// [`Parser`](Parser) by another (see [`/`](struct.Parser.html#impl-Div<Parser<F2%2C%20I>>)).
/// Specifically, it allows to use operators for [`Parser::separated`](Parser::separated).
pub struct ElementSeparator<E, S, I>(Parser<E, I>, Parser<S, I>);

impl<F1, F2, I> ops::Div<Parser<F2, I>> for Parser<F1, I> {
    type Output = ElementSeparator<F1, F2, I>;

    fn div(self, separator: Parser<F2, I>) -> Self::Output {
        ElementSeparator(self, separator)
    }
}

/// This type is used to make the syntactic sugar work. It's observed if you multiply a parser or
/// an [`ElementSeparator`]ElementSeparator] by a function (see
/// [`*` for `ElementSeparator`](struct.ElementSeparator.html#impl-Mul<CG>), or
/// [`*` for `Parser`](struct.Parser.html#impl-Mul<CG>)).
/// Specifically, it allows to use operators for [`Parser::separated`](Parser::separated) and
/// [`Parser::repeat`](Parser::repeat).
pub struct WithCollectionGenerator<A, CG>(A, CG);

impl<F, I, CG> ops::Mul<CG> for Parser<F, I> {
    type Output = WithCollectionGenerator<Parser<F, I>, CG>;

    fn mul(self, cg: CG) -> Self::Output {
        WithCollectionGenerator(self, cg)
    }
}

impl<E, S, I, CG> ops::Mul<CG> for ElementSeparator<E, S, I> {
    type Output = WithCollectionGenerator<ElementSeparator<E, S, I>, CG>;

    fn mul(self, cg: CG) -> Self::Output {
        WithCollectionGenerator(self, cg)
    }
}

type InclusiveUsizeRange = ops::RangeInclusive<usize>;

type WithManyCombinator<I, G, R, F, S> = Parser<combinators::MapLeft<combinators::CountedSeparated<G, R, F, S>>, I>;

impl<C, F1, I, CG, R> ops::Mul<R> for WithCollectionGenerator<Parser<F1, I>, CG> where F1: ParserImpl<I>, R: RangeLike, I: Clone, CG: Fn() -> C, C: Collection<Item = F1::Output> {
    type Output = WithManyCombinator<I, CG, R, F1, combinators::Epsilon<F1::Error>>;

    fn mul(self, range: R) -> Self::Output {
        let WithCollectionGenerator(parser, cg) = self;
        parser / Parser::new_generic(combinators::Epsilon(PhantomData)) * cg * range
    }
}

impl<C,F1, F2, I, CG, R> ops::Mul<R> for WithCollectionGenerator<ElementSeparator<F1, F2, I>, CG> where F1: ParserImpl<I>, F2: ParserImpl<I, Error = F1::Error>, R: RangeLike, I: Clone, CG: Fn() -> C, C: Collection<Item = F1::Output> {
    type Output = WithManyCombinator<I, CG, R, F1, F2>;

    fn mul(self, range: R) -> Self::Output {
        Parser::new_generic(combinators::MapLeft(combinators::CountedSeparated {
            main_parser: ((self.0).0).0,
            separator: ((self.0).1).0,
            range,
            collection_generator: self.1
        }))
    }
}

/// Matches nothing, always succeeds.
pub fn epsilon<I, E>() -> parser!(<I, (), E>) {
    Parser::new_generic(combinators::Epsilon(PhantomData))
}

/// Requires the input to start with the given subsequence/substring.
pub fn tag<'a, I, E, T: ?Sized>(tag: &'a T) -> parser!(<I, T::Output, E> + 'a)
where T: Tag<I>, E: TagError<'a, T, I>, I: Clone {
    Parser::new(move |inp: I| tag.parse_tag(inp.clone()).map(|(tag, rest)| (rest, tag)).ok_or_else(|| E::tag(tag, inp)))
}

/// Always fails, generating the error using a closure.
///
/// If your error is [`Clone`](Clone), consider using [`fail_with_const`](fail_with_const).
pub fn fail_with<I, O, E, F>(f: F) -> parser!(<I, O, E>)
where F: Fn() -> E {
    Parser::new(move |_| Err(f()))
}

/// Always fails, generating the error using [`Clone::clone`](Clone::clone).
///
/// If your error isn't [`Clone`](Clone), consider using [`fail_with`](fail_with).
pub fn fail_with_const<I, O, E>(e: E) -> parser!(<I, O, E>)
where E: Clone {
    fail_with(move || e.clone())
}

/// Fails if the input isn't empty.
pub fn eof<I, E>() -> parser!(<I, (), E>)
where I: HasEof, E: EofError<I> {
    Parser::new(move |inp: I| if inp.at_eof() {
        Ok((inp, ()))
    } else {
        Err(E::no_eof(inp))
    })
}

/// Fails if the given parser succeeds, and succeeds if the given parser fails.
pub fn not<I, O, EO, E, F>(p: Parser<F, I>) -> parser!(<I, EO, E>)
where F: ParserImpl<I, Output = O, Error = EO>, E: NotError<O, I>, I: Clone {
    Parser::new(move |inp: I| match p.0.apply(inp.clone()) {
        Ok((_, out)) => Err(E::not(out, inp)),
        Err(err) => Ok((inp, err)),
    })
}

/// Consumes the first element/character of the input, if it matches the given condition.
pub fn consume_one_where<I, E, F>(f: F) -> parser!(<I, I::Element, E>)
where I: SplitFirst + Clone, F: Fn(&I::Element) -> bool, E: ConsumeError<I> {
    Parser::new(move |inp: I| {
        match inp.clone().split_first() {
            Some((element, rest)) => if f(&element) {
                Ok((rest, element))
            } else {
                Err(E::condition_failed(element, inp))
            },
            None => Err(E::eof(inp))
        }
    })
}

/// Consumes elements/characters of the input that match the given condition.
///
/// The range acts like the range given to other repeating combinators, see the
/// [documentation for `Parser`](Parser)
pub fn consume_while<I, E, F, R: RangeLike>(f: F, r: R) -> parser!(<I, (), E>)
where I: SplitFirst, F: Fn(&I::Element) -> bool, E: ConsumeError<I>, I: Clone {
    consume_one_where(f).repeat(r, NoCollection::new).map(|_| ())
}

/// Like [`consume_while`](consume_while), but returns the matched substring.
///
/// The range acts like the range given to other repeating combinators, see the
/// [documentation for `Parser`](Parser)
pub fn record_while<I, E, F, R: RangeLike>(f: F, r: R) -> parser!(<I, I::Output, E>)
where I: SplitFirst, F: Fn(&I::Element) -> bool, E: ConsumeError<I>, I: Clone + Recordable {
    consume_while(f, r).record()
}

/// Consumes the rest of the input, and returns the matched string.
pub fn take<I, E, R: RangeLike>(r: R) -> parser!(<I, I::Output, E>)
where I: SplitFirst, E: ConsumeError<I>, I: Clone + Recordable {
    record_while(|_| true, r)
}

/// Outputs the result of the given parser without consuming it.
pub fn lookahead<I, F>(f: Parser<F, I>) -> parser!(<I, F::Output, F::Error>)
where F: ParserImpl<I>, I: Clone {
    Parser::new(move |inp: I| {
        let left = inp.clone();
        f.0.apply(inp).map(|(_, out)| (left, out))
    })
}

/// Outputs the output of the given function, or fails if the function returns [`Err`](Err).
pub fn output<I, O, E, F>(f: F) -> parser!(<I, O, E>)
where F: Fn() -> Result<O, E> {
    Parser::new(move |inp: I| f().map(|out| (inp, out)))
}