1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
#![deny(rust_2018_idioms)]

use crate::rust_ir::*;
use chalk_ir::interner::Interner;

use chalk_ir::*;
use std::fmt::Debug;
use std::sync::Arc;

#[cfg(test)]
#[macro_use]
mod test_macros;

pub mod clauses;
pub mod coherence;
mod coinductive_goal;
pub mod display;
pub mod ext;
pub mod goal_builder;
mod infer;
pub mod logging;
pub mod logging_db;
#[cfg(feature = "recursive-solver")]
pub mod recursive;
pub mod rust_ir;
mod solve;
pub mod split;
pub mod wf;

pub trait RustIrDatabase<I: Interner>: Debug {
    /// Returns any "custom program clauses" that do not derive from
    /// Rust IR. Used only in testing the underlying solver.
    fn custom_clauses(&self) -> Vec<ProgramClause<I>>;

    /// Returns the datum for the associated type with the given id.
    fn associated_ty_data(&self, ty: AssocTypeId<I>) -> Arc<AssociatedTyDatum<I>>;

    /// Returns the datum for the definition with the given id.
    fn trait_datum(&self, trait_id: TraitId<I>) -> Arc<TraitDatum<I>>;

    /// Returns the datum for the ADT with the given id.
    fn adt_datum(&self, adt_id: AdtId<I>) -> Arc<AdtDatum<I>>;

    /// Returns the representation for the ADT definition with the given id.
    fn adt_repr(&self, id: AdtId<I>) -> AdtRepr;

    /// Returns the datum for the fn definition with the given id.
    fn fn_def_datum(&self, fn_def_id: FnDefId<I>) -> Arc<FnDefDatum<I>>;

    /// Returns the datum for the impl with the given id.
    fn impl_datum(&self, impl_id: ImplId<I>) -> Arc<ImplDatum<I>>;

    /// Returns the `AssociatedTyValue` with the given id.
    fn associated_ty_value(&self, id: AssociatedTyValueId<I>) -> Arc<AssociatedTyValue<I>>;

    /// Returns the `OpaqueTyDatum` with the given id.
    fn opaque_ty_data(&self, id: OpaqueTyId<I>) -> Arc<OpaqueTyDatum<I>>;

    /// Returns the "hidden type" corresponding with the opaque type.
    fn hidden_opaque_type(&self, id: OpaqueTyId<I>) -> Ty<I>;

    /// Returns a list of potentially relevant impls for a given
    /// trait-id; we also supply the type parameters that we are
    /// trying to match (if known: these parameters may contain
    /// inference variables, for example). The implementor is
    /// permitted to return any superset of the applicable impls;
    /// chalk will narrow down the list to only those that truly
    /// apply. The parameters are provided as a "hint" to help the
    /// implementor do less work, but can be completely ignored if
    /// desired.
    fn impls_for_trait(&self, trait_id: TraitId<I>, parameters: &[GenericArg<I>])
        -> Vec<ImplId<I>>;

    /// Returns the impls that require coherence checking. This is not the
    /// full set of impls that exist:
    ///
    /// - It can exclude impls not defined in the current crate.
    /// - It can exclude "built-in" impls, like those for closures; only the
    ///   impls actually written by users need to be checked.
    fn local_impls_to_coherence_check(&self, trait_id: TraitId<I>) -> Vec<ImplId<I>>;

    /// Returns true if there is an explicit impl of the auto trait
    /// `auto_trait_id` for the ADT `adt_id`. This is part of
    /// the auto trait handling -- if there is no explicit impl given
    /// by the user for the struct, then we provide default impls
    /// based on the field types (otherwise, we rely on the impls the
    /// user gave).
    fn impl_provided_for(&self, auto_trait_id: TraitId<I>, adt_id: AdtId<I>) -> bool;

    /// A stop-gap solution to force an impl for a given well-known trait.
    /// Useful when the logic for a given trait is absent or incomplete.
    /// A value of `Some(true)` means that the the clause for the impl will be
    /// added. A value of `Some(false)` means that the clause for the impl will
    /// not be added, and fallback logic will not be checked. A value of `None`
    /// means that the clause will not be added, but fallback logic may add logic.
    #[allow(unused_variables)]
    fn force_impl_for(&self, well_known: WellKnownTrait, ty: &TyData<I>) -> Option<bool> {
        None
    }

    /// Returns id of a trait lang item, if found
    fn well_known_trait_id(&self, well_known_trait: WellKnownTrait) -> Option<TraitId<I>>;

    /// Calculates program clauses from an env. This is intended to call the
    /// `program_clauses_for_env` function and then possibly cache the clauses.
    fn program_clauses_for_env(&self, environment: &Environment<I>) -> ProgramClauses<I>;

    fn interner(&self) -> &I;

    /// Check if a trait is object safe
    fn is_object_safe(&self, trait_id: TraitId<I>) -> bool;

    /// Gets the `ClosureKind` for a given closure and substitution.
    fn closure_kind(&self, closure_id: ClosureId<I>, substs: &Substitution<I>) -> ClosureKind;

    /// Gets the inputs and output for a given closure id and substitution. We
    /// pass both the `ClosureId` and it's `Substituion` to give implementors
    /// the freedom to store associated data in the substitution (like rustc) or
    /// separately (like chalk-integration).
    fn closure_inputs_and_output(
        &self,
        closure_id: ClosureId<I>,
        substs: &Substitution<I>,
    ) -> Binders<FnDefInputsAndOutputDatum<I>>;

    /// Gets the upvars as a `Ty` for a given closure id and substitution. There
    /// are no restrictions on the type of upvars.
    fn closure_upvars(&self, closure_id: ClosureId<I>, substs: &Substitution<I>) -> Binders<Ty<I>>;

    /// Gets the substitution for the closure when used as a function.
    /// For example, for the following (not-quite-)rust code:
    /// ```ignore
    /// let foo = |a: &mut u32| { a += 1; };
    /// let c: &'a u32 = &0;
    /// foo(c);
    /// ```
    ///
    /// This would return a `Substitution` of `[&'a]`. This could either be
    /// substituted into the inputs and output, or into the upvars.
    fn closure_fn_substitution(
        &self,
        closure_id: ClosureId<I>,
        substs: &Substitution<I>,
    ) -> Substitution<I>;

    /// Retrieves a trait's original name. No uniqueness guarantees.
    /// TODO: remove this, use only interner debug methods
    fn trait_name(&self, trait_id: TraitId<I>) -> String;

    /// Retrieves a struct's original name. No uniqueness guarantees.
    fn adt_name(&self, struct_id: AdtId<I>) -> String;

    /// Retrieves the name of an associated type.
    fn assoc_type_name(&self, assoc_ty_id: AssocTypeId<I>) -> String;

    /// Retrieves the name of an opaque type.
    fn opaque_type_name(&self, opaque_ty_id: OpaqueTyId<I>) -> String;

    /// Retrieves the name of a function definition
    fn fn_def_name(&self, fn_def_id: FnDefId<I>) -> String;
}

pub use clauses::program_clauses_for_env;

pub use solve::Guidance;
pub use solve::Solution;
pub use solve::Solver;
pub use solve::SolverChoice;
pub use solve::SubstitutionResult;

#[macro_use]
mod debug_macros {
    #[macro_export]
    macro_rules! debug_span {
        ($($t: tt)*) => {
            let __span = tracing::debug_span!($($t)*);
            let __span = __span.enter();
        };
    }
}