1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
// Copyright 2014 The CGMath Developers. For a full listing of the authors,
// refer to the Cargo.toml file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use std::fmt;

use rust_num::{Zero, One};

use structure::*;

use approx::ApproxEq;
use matrix::{Matrix2, Matrix3, Matrix4};
use num::{BaseFloat, BaseNum};
use point::{Point2, Point3};
use rotation::*;
use vector::{Vector2, Vector3};

/// A trait representing an [affine
/// transformation](https://en.wikipedia.org/wiki/Affine_transformation) that
/// can be applied to points or vectors. An affine transformation is one which
pub trait Transform<P: EuclideanSpace>: Sized {
    /// Create an identity transformation. That is, a transformation which
    /// does nothing.
    fn one() -> Self;

    /// Create a transformation that rotates a vector to look at `center` from
    /// `eye`, using `up` for orientation.
    fn look_at(eye: P, center: P, up: P::Diff) -> Self;

    /// Transform a vector using this transform.
    fn transform_vector(&self, vec: P::Diff) -> P::Diff;

    /// Transform a point using this transform.
    fn transform_point(&self, point: P) -> P;

    /// Transform a vector as a point using this transform.
    #[inline]
    fn transform_as_point(&self, vec: P::Diff) -> P::Diff {
        self.transform_point(P::from_vec(vec)).to_vec()
    }

    /// Combine this transform with another, yielding a new transformation
    /// which has the effects of both.
    fn concat(&self, other: &Self) -> Self;

    /// Create a transform that "un-does" this one.
    fn invert(&self) -> Option<Self>;

    /// Combine this transform with another, in-place.
    #[inline]
    fn concat_self(&mut self, other: &Self) {
        *self = Self::concat(self, other);
    }

    /// Invert this transform in-place, failing if the transformation is not
    /// invertible.
    #[inline]
    fn invert_self(&mut self) {
        *self = self.invert().unwrap()
    }
}

/// A generic transformation consisting of a rotation,
/// displacement vector and scale amount.
#[derive(Copy, Clone, Debug, RustcEncodable, RustcDecodable)]
pub struct Decomposed<V: VectorSpace, R> {
    pub scale: V::Scalar,
    pub rot: R,
    pub disp: V,
}

impl<P: EuclideanSpace, R: Rotation<P>> Transform<P> for Decomposed<P::Diff, R> where
    // FIXME: Ugly type signatures - blocked by rust-lang/rust#24092
    <P as EuclideanSpace>::Scalar: BaseFloat,
    // FIXME: Investigate why this is needed!
    <P as EuclideanSpace>::Diff: VectorSpace,
{
    #[inline]
    fn one() -> Decomposed<P::Diff, R> {
        Decomposed {
            scale: P::Scalar::one(),
            rot: R::one(),
            disp: P::Diff::zero(),
        }
    }

    #[inline]
    fn look_at(eye: P, center: P, up: P::Diff) -> Decomposed<P::Diff, R> {
        let rot = R::look_at(center - eye, up);
        let disp = rot.rotate_vector(P::origin() - eye);
        Decomposed {
            scale: P::Scalar::one(),
            rot: rot,
            disp: disp,
        }
    }

    #[inline]
    fn transform_vector(&self, vec: P::Diff) -> P::Diff {
        self.rot.rotate_vector(vec * self.scale)
    }

    #[inline]
    fn transform_point(&self, point: P) -> P {
        self.rot.rotate_point(point * self.scale) + self.disp
    }

    fn concat(&self, other: &Decomposed<P::Diff, R>) -> Decomposed<P::Diff, R> {
        Decomposed {
            scale: self.scale * other.scale,
            rot: self.rot.concat(&other.rot),
            disp: self.transform_as_point(other.disp.clone()),
        }
    }

    fn invert(&self) -> Option<Decomposed<P::Diff, R>> {
        if self.scale.approx_eq(&P::Scalar::zero()) {
            None
        } else {
            let s = P::Scalar::one() / self.scale;
            let r = self.rot.invert();
            let d = r.rotate_vector(self.disp.clone()) * -s;
            Some(Decomposed {
                scale: s,
                rot: r,
                disp: d,
            })
        }
    }
}

pub trait Transform2<S: BaseNum>: Transform<Point2<S>> + Into<Matrix3<S>> {}
pub trait Transform3<S: BaseNum>: Transform<Point3<S>> + Into<Matrix4<S>> {}

impl<S: BaseFloat, R: Rotation2<S>> From<Decomposed<Vector2<S>, R>> for Matrix3<S> {
    fn from(dec: Decomposed<Vector2<S>, R>) -> Matrix3<S> {
        let m: Matrix2<_> = dec.rot.into();
        let mut m: Matrix3<_> = (&m * dec.scale).into();
        m.z = dec.disp.extend(S::one());
        m
    }
}

impl<S: BaseFloat, R: Rotation3<S>> From<Decomposed<Vector3<S>, R>> for Matrix4<S> {
    fn from(dec: Decomposed<Vector3<S>, R>) -> Matrix4<S> {
        let m: Matrix3<_> = dec.rot.into();
        let mut m: Matrix4<_> = (&m * dec.scale).into();
        m.w = dec.disp.extend(S::one());
        m
    }
}

impl<S: BaseFloat, R: Rotation2<S>> Transform2<S> for Decomposed<Vector2<S>, R> {}

impl<S: BaseFloat, R: Rotation3<S>> Transform3<S> for Decomposed<Vector3<S>, R> {}

/// A homogeneous transformation matrix.
#[derive(Copy, Clone, RustcEncodable, RustcDecodable)]
pub struct AffineMatrix3<S> {
    pub mat: Matrix4<S>,
}

impl<S: BaseFloat> Transform<Point3<S>> for AffineMatrix3<S> {
    #[inline]
    fn one() -> AffineMatrix3<S> {
       AffineMatrix3 { mat: Matrix4::identity() }
    }

    #[inline]
    fn look_at(eye: Point3<S>, center: Point3<S>, up: Vector3<S>) -> AffineMatrix3<S> {
        AffineMatrix3 { mat: Matrix4::look_at(eye, center, up) }
    }

    #[inline]
    fn transform_vector(&self, vec: Vector3<S>) -> Vector3<S> {
        (self.mat * vec.extend(S::zero())).truncate()
    }

    #[inline]
    fn transform_point(&self, point: Point3<S>) -> Point3<S> {
        Point3::from_homogeneous(self.mat * point.to_homogeneous())
    }

    #[inline]
    fn concat(&self, other: &AffineMatrix3<S>) -> AffineMatrix3<S> {
        AffineMatrix3 { mat: self.mat * other.mat }
    }

    #[inline]
    fn invert(&self) -> Option<AffineMatrix3<S>> {
        self.mat.invert().map(|m| AffineMatrix3{ mat: m })
    }
}

impl<S: BaseNum> From<AffineMatrix3<S>> for Matrix4<S> {
    #[inline] fn from(aff: AffineMatrix3<S>) -> Matrix4<S> { aff.mat }
}

impl<S: BaseFloat> Transform3<S> for AffineMatrix3<S> {}

impl<S: fmt::Debug> fmt::Debug for AffineMatrix3<S> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        try!(write!(f, "AffineMatrix3 "));
        <[[S; 4]; 4] as fmt::Debug>::fmt(self.mat.as_ref(), f)
    }
}