cargo-dylint 1.0.7

A tool for running Rust lints from dynamic libraries
cargo-dylint-1.0.7 is not a library.

Dylint

A tool for running Rust lints from dynamic libraries

cargo install cargo-dylint

Dylint is a Rust linting tool, similar to Clippy. But whereas Clippy runs a predetermined, static set of lints, Dylint runs lints from user-specified, dynamic libraries. Thus, Dylint allows developers to maintain their own personal lint collections.

Note: cargo-dylint will not work correctly if installed with the --debug flag. If a debug build of cargo-dylint is needed, please build it from the cargo-dylint package within this repository.

Contents

Quick start: running Dylint

The next four commands install Dylint and run one of the example libraries' lints on the Dylint source code:

cargo install cargo-dylint dylint-link          # Install cargo-dylint and dylint-link
git clone https://github.com/trailofbits/dylint # Clone the Dylint repository
cd dylint                                       # Change directory
cargo dylint allow_clippy                       # Run an example libraries' lint on the Dylint source code

In the above example, the library is found via workspace metadata (see below).

Quick start: writing lints

You can start writing your own Dylint libraries by forking the dylint-template repository. The repository produces a loadable library right out of the box. You can verify this as follows:

git clone https://github.com/trailofbits/dylint-template
cd dylint-template
cargo build
DYLINT_LIBRARY_PATH=$PWD/target/debug cargo dylint fill_me_in --list

All you have to do is implement the LateLintPass trait and accommodate the symbols asking to be filled in.

Helpful resources for writing lints appear below.

How libraries are found

Dylint tries to run all lints in all libraries named on the command line. Dylint resolves names to libraries in the following three ways:

  1. Via the DYLINT_LIBRARY_PATH environment variable. If DYLINT_LIBRARY_PATH is set when Dylint is started, Dylint treats it as a colon-separated list of paths, and searches each path for files with names of the form DLL_PREFIX LIBRARY_NAME '@' TOOLCHAIN DLL_SUFFIX (see Library requirements below). For each such file found, LIBRARY_NAME resolves to that file.

  2. Via workspace metadata. If Dylint is started in a workspace, Dylint checks the workspace's Cargo.toml file for workspace.metadata.dylint.libraries (see Workspace metadata below). Dylint downloads and builds each listed entry, similar to how Cargo downloads and builds a dependency. The resulting target/release directories are searched and names are resolved in the manner described in 1 above.

  3. By path. If a name does not resolve to a library via 1 or 2, it is treated as a path.

It is considered an error if a name used on the command line resolves to multiple libraries.

If --lib name is used, then name is is treated only as a library name, and not as a path.

If --path name is used, then name is is treated only as a path, and not as a library name.

If --all is used, Dylint runs all lints in all libraries discovered via 1 and 2 above.

Note: Earlier versions of Dylint searched the current package's target/debug and target/release directories for libraries. This feature has been removed.

Workspace metadata

A workspace can name the libraries it should be linted with in its Cargo.toml file. Specifically, a workspace's manifest can contain a TOML list under workspace.metadata.dylint.libraries. Each list entry must have the form of a Cargo git or path dependency, with the following differences:

  • There is no leading package name, i.e., no package =.
  • path entries can contain glob patterns, e.g., *.
  • Any entry can contain a pattern field whose value is a glob pattern. The pattern field indicates the subdirectories that contain Dylint libraries.

Dylint downloads and builds each entry, similar to how Cargo downloads and builds a dependency. The resulting target/release directories are searched for files with names of the form that Dylint recognizes (see Library requirements below).

As an example, if you include the following in your workspace's Cargo.toml file and run cargo dylint --all --workspace, Dylint will run all of the example lints in this repository on your workspace:

[workspace.metadata.dylint]
libraries = [
    { git = "https://github.com/trailofbits/dylint", pattern = "examples/*" },
]

Library requirements

A Dylint library must satisfy four requirements. Note: Before trying to satisfy these explicitly, see Utilities below.

  1. Have a filename of the form:

    DLL_PREFIX LIBRARY_NAME '@' TOOLCHAIN DLL_SUFFIX
    

    The following is a concrete example on Linux:

    libquestion_mark_in_expression@nightly-2021-04-08-x86_64-unknown-linux-gnu.so
    

    The filename components are as follows:

    • DLL_PREFIX and DLL_SUFFIX are OS-specific strings. For example, on Linux, they are lib and .so, respectively.
    • LIBRARY_NAME is a name chosen by the library's author.
    • TOOLCHAIN is the Rust toolchain for which the library is compiled, e.g., nightly-2021-04-08-x86_64-unknown-linux-gnu.
  2. Export a dylint_version function:

    extern "C" fn dylint_version() -> *mut std::os::raw::c_char
    

    This function should return 0.1.0. This may change in future versions of Dylint.

  3. Export a register_lints function:

    fn register_lints(sess: &rustc_session::Session, lint_store: &mut rustc_lint::LintStore)
    

    This is a function called by the Rust compiler. It is documented here.

  4. Link against the rustc_driver dynamic library. This ensures the library uses Dylint's copies of the Rust compiler crates. This requirement can be satisfied by including the following declaration in your library's lib.rs file:

    extern crate rustc_driver;
    

Dylint provides utilities to help meet the above requirements. If your library uses the dylint-link tool and the dylint_library! macro, then all you should have to do is implement the register_lints function.

Utilities

The following utilities can be helpful for writing Dylint libraries:

  • dylint-link is a wrapper around Rust's default linker (cc) that creates a copy of your library with a filename that Dylint recognizes.
  • dylint_library! is a macro that automatically defines the dylint_version function and adds the extern crate rustc_driver declaration.
  • ui_test is a function that can be used to test Dylint libraries. It provides convenient access to the compiletest_rs package.
  • clippy_utils is a collection of utilities to make writing lints easier. It is generously made public by the Rust Clippy Developers. Note that, like rustc, clippy_utils provides no stability guarantees for its APIs.

VS Code integration

Dylint results can be viewed in VS Code using rust-analyzer. To do so, add the following to your VS Code settings.json file:

    "rust-analyzer.checkOnSave.overrideCommand": [
        "cargo",
        "dylint",
        "--all",
        "--workspace",
        "--",
        "--all-targets",
        "--message-format=json"
    ]

If you want to use rust-analyzer inside a lint library, you need to add the following to your VS Code settings.json file:

    "rust-analyzer.rustcSource": "discover",

And add the following to the library's Cargo.toml file:

[package.metadata.rust-analyzer]
rustc_private = true

Limitations

To run a library's lints on a package, Dylint tries to build the package with the same toolchain used to build the library. So if a package requires a specific toolchain to build, Dylint may not be able to apply certain libraries to that package.

One way this problem can manifest itself is if you try to run one library's lints on the source code of another library. That is, if two libraries use different toolchains, they may not be applicable to each other.

Resources

Helpful resources for writing lints include the following: