1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
use crate::parameters::DiveParameters;
use crate::plan::DivePlan;
use crate::result::DiveResult;
use crate::{PPO2_MAXIMUM_DECO, PPO2_MINIMUM};
use capra_core::common::dive_segment::SegmentType::{AscDesc, DecoStop};
use capra_core::common::dive_segment::{DiveSegment, SegmentType};
use capra_core::common::gas::Gas;
use capra_core::common::tank::Tank;
use capra_core::common::time_taken;
use capra_core::deco::deco_algorithm::DecoAlgorithm;
use std::cmp::Ordering;
use std::collections::HashMap;
use std::iter;
use time::Duration;

/// An open circuit dive plan.
#[derive(Copy, Clone, Debug)]
pub struct OpenCircuit<'a, T: DecoAlgorithm> {
    /// Decompression algorithm to use
    deco_algorithm: T,
    /// Deco gases to use, and an optional corresponding Maximum Operating Depth
    deco_gases: &'a [(Gas, Option<usize>)],
    /// Bottom segments of the dive and corresponding gas used
    bottom_segments: &'a [(DiveSegment, Gas)],
    /// Parameters
    parameters: DiveParameters,
}

impl<'a, T: DecoAlgorithm> OpenCircuit<'a, T> {
    /// Returns a open circuit dive plan with the given parameters.
    /// # Arguments
    /// * `deco_algorithm` - Decompression algorithm to use
    /// * `deco_gases` - Deco gases to use, and an optional corresponding Maximum Operating Depth
    /// * `bottom_segments` - Bottom segments of the dive and corresponding gas used
    /// * `ascent_rate` - Ascent rate to use throughout the dive
    /// * `descent_rate` - Descent rate to use throughout the dive
    /// * `water_density` - Density of water during the dive (measured in kg m^-3)
    /// * `sac_bottom` - Surface Air Consumption on bottom segments (measured in bar min^-1)
    /// * `sac_deco` - Surface Air Consumption during decompression (measured in bar min^-1)
    pub fn new(
        deco_algorithm: T,
        deco_gases: &'a [(Gas, Option<usize>)],
        bottom_segments: &'a [(DiveSegment, Gas)],
        parameters: DiveParameters,
    ) -> Self {
        OpenCircuit {
            deco_algorithm,
            deco_gases,
            bottom_segments,
            parameters,
        }
    }

    /// Returns gases that are suitable for use at a dive segment
    fn filter_gases<'b>(
        segment: &DiveSegment,
        gases: &'b [(Gas, Option<usize>)],
        metres_per_bar: f64,
    ) -> Vec<&'b Gas> {
        let mut candidates = gases
            .iter()
            .filter(|x| x.1.map_or(true, |t| t >= segment.start_depth()))
            .map(|x| &x.0)
            .filter(|a| a.in_ppo2_range(segment.start_depth(), PPO2_MINIMUM, PPO2_MAXIMUM_DECO))
            .filter(|a| a.equivalent_narcotic_depth(segment.start_depth()) <= segment.start_depth())
            .collect::<Vec<&Gas>>();

        candidates.sort_by(|a, b| {
            a.pp_o2(segment.start_depth(), metres_per_bar)
                .partial_cmp(&b.pp_o2(segment.start_depth(), metres_per_bar))
                .unwrap()
        }); // sort by descending order of ppo2

        candidates
    }

    /// Return a gas switch point (if exists) in a list of dive segments.
    fn find_gas_switch_point<'c>(
        segments: &'c [DiveSegment],
        current_gas: &Gas,
        gases: &'c [(Gas, Option<usize>)],
        metres_per_bar: f64,
    ) -> Option<(&'c DiveSegment, &'c Gas)> {
        // Best gasplan is the gasplan that has the highest ppO2 (not over max allowed), and not over equivalent_narcotic_depth.
        for stop in segments.iter().filter(|x| x.segment_type() != AscDesc) {
            let candidate_gases = <OpenCircuit<'a, T>>::filter_gases(stop, gases, metres_per_bar);
            if candidate_gases.is_empty() {
                // there no fitting candidate gases.
                continue;
            }
            if candidate_gases[candidate_gases.len() - 1] != current_gas {
                return Some((stop, &candidate_gases[candidate_gases.len() - 1]));
            }
        }
        None
    }

    /// Perform an open circuit dive plan from the `start` segment to the `end` segment.
    /// The `end` segment is set to `None` if the end is the surface.
    pub(crate) fn level_to_level(
        &self,
        mut deco: T,
        start: &(DiveSegment, Gas),
        end: Option<&(DiveSegment, Gas)>,
        stops_performed: &mut Vec<(DiveSegment, Gas)>,
    ) -> T {
        // Check if there is any depth change
        if let Some(t) = end {
            match start.0.end_depth().cmp(&t.0.start_depth()) {
                Ordering::Less => {
                    // Create a segment with the next segment's gas
                    let descent = DiveSegment::new(
                        SegmentType::AscDesc,
                        start.0.end_depth(),
                        t.0.start_depth(),
                        time_taken(
                            self.parameters.descent_rate,
                            start.0.end_depth(),
                            t.0.start_depth(),
                        ),
                        self.parameters.ascent_rate,
                        self.parameters.descent_rate,
                    )
                    .unwrap();
                    deco.add_dive_segment(&descent, &start.1, self.parameters.metres_per_bar);
                    stops_performed.push((descent, start.1));
                    return deco;
                }
                Ordering::Equal => {
                    // There cannot be any more segments to add.
                    return deco;
                }
                Ordering::Greater => {} // Continue to main algorithm
            }
        }

        let mut virtual_deco = deco;
        // Find the stops between start and end using start gas
        let end_depth = match end {
            Some(t) => t.0.start_depth(),
            None => 0,
        };
        let stops = virtual_deco
            .surface(
                self.parameters.ascent_rate,
                self.parameters.descent_rate,
                &start.1,
                self.parameters.metres_per_bar,
            )
            .into_iter()
            .take_while(|x| x.start_depth() > end_depth)
            .collect::<Vec<DiveSegment>>();

        let switch_gases: Vec<(Gas, Option<usize>)> = match end {
            Some(t) => vec![(start.1, None), (t.1, None)],
            None => self.deco_gases.to_vec(),
        };

        let switch_point = <OpenCircuit<'a, T>>::find_gas_switch_point(
            &stops,
            &start.1,
            &switch_gases,
            self.parameters.metres_per_bar,
        );

        // If there are deco stops in between
        if let (Some(switch), true) = (
            switch_point,
            stops.iter().any(|x| x.segment_type() == DecoStop),
        ) {
            // Rewind the algorithm
            virtual_deco = deco;

            // Replay between stops until gas switch point
            for stop in stops
                .iter()
                .take_while(|x| x.start_depth() > switch.0.start_depth())
            {
                virtual_deco.add_dive_segment(&stop, &start.1, self.parameters.metres_per_bar);
                stops_performed.push((*stop, start.1));
            }

            // At gas switch point, use new gas and calculate new deco schedule
            let new_stop = match virtual_deco
                .get_stops(
                    self.parameters.ascent_rate,
                    self.parameters.descent_rate,
                    &switch.1,
                    self.parameters.metres_per_bar,
                )
                .into_iter()
                .find(|x| x.segment_type() == DecoStop && x.start_depth() == switch.0.start_depth())
            {
                Some(t) => t,
                None => DiveSegment::new(
                    SegmentType::DecoStop,
                    switch.0.start_depth(),
                    switch.0.end_depth(),
                    Duration::minute(),
                    self.parameters.ascent_rate,
                    self.parameters.descent_rate,
                )
                .unwrap(),
            };

            virtual_deco.add_dive_segment(&new_stop, switch.1, self.parameters.metres_per_bar);
            stops_performed.push((new_stop, *switch.1));

            // Call recursively with first new gas stop as start, end same
            deco = virtual_deco;
            self.level_to_level(deco, &(new_stop, *switch.1), end, stops_performed)
        } else {
            // Push segments and return
            stops_performed.append(&mut stops.into_iter().zip(iter::repeat(start.1)).collect());
            deco = virtual_deco;
            deco
        }
    }
}

impl<'a, T: DecoAlgorithm> DivePlan<T> for OpenCircuit<'a, T> {
    fn plan(&self) -> DiveResult<T> {
        let mut total_segments: Vec<(DiveSegment, Gas)> = Vec::new();
        let mut deco = self.deco_algorithm;

        // Create the AscDesc to the first segment
        let descent_to_beginning = DiveSegment::new(
            AscDesc,
            0,
            self.bottom_segments[0].0.start_depth(),
            time_taken(
                self.parameters.descent_rate,
                0,
                self.bottom_segments[0].0.start_depth(),
            ),
            self.parameters.ascent_rate,
            self.parameters.descent_rate,
        )
        .unwrap();

        deco.add_dive_segment(
            &descent_to_beginning,
            &self.bottom_segments[0].1,
            self.parameters.metres_per_bar,
        );
        total_segments.push((descent_to_beginning, self.bottom_segments[0].1));

        for win in self.bottom_segments.windows(2) {
            let mut stops_performed: Vec<(DiveSegment, Gas)> = Vec::new();
            let start = win[0];
            let end = win[1];

            deco.add_dive_segment(&start.0, &start.1, self.parameters.metres_per_bar);
            total_segments.push(start);

            deco = self.level_to_level(deco, &start, Some(&end), &mut stops_performed);
            total_segments.append(&mut stops_performed);
        }

        // However the sliding window does not capture the final element.
        let final_stop = self.bottom_segments.last().unwrap();
        deco.add_dive_segment(&final_stop.0, &final_stop.1, self.parameters.metres_per_bar);
        total_segments.push(*final_stop);

        let mut stops_performed: Vec<(DiveSegment, Gas)> = Vec::new();
        deco = self.level_to_level(deco, &final_stop, None, &mut stops_performed);
        total_segments.append(&mut stops_performed);

        // Gas planning
        let mut gas_plan: HashMap<Gas, usize> = HashMap::new();
        for (segment, gas) in &total_segments {
            let gas_consumed =
                match segment.segment_type() {
                    SegmentType::DecoStop => segment
                        .gas_consumed(self.parameters.sac_deco, self.parameters.metres_per_bar),
                    SegmentType::NoDeco => 0, // No deco segments aren't actually segments
                    _ => segment
                        .gas_consumed(self.parameters.sac_bottom, self.parameters.metres_per_bar),
                };
            let gas_needed = *(gas_plan.entry(*gas).or_insert(0)) + gas_consumed;
            gas_plan.insert(*gas, gas_needed);
        }

        DiveResult::new(deco, total_segments, gas_plan)
    }

    fn plan_backwards(&self, _tanks: &[Tank]) -> DiveResult<T> {
        unimplemented!()
    }
}