1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
// Copyright (c) 2013-2015 Sandstorm Development Group, Inc. and contributors
// Licensed under the MIT License:
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.

//! Reading and writing of messages using the
//! [standard stream framing](https://capnproto.org/encoding.html#serialization-over-a-stream).

use std::io::{Read, Write};

use message;
use util::read_exact;
use {Error, Result, Word};

use byteorder::{ByteOrder, LittleEndian};

/// Segments read from a single flat slice of words.
pub struct SliceSegments<'a> {
    words: &'a [Word],
    segment_slices : Vec<(usize, usize)>,
}

impl <'a> message::ReaderSegments for SliceSegments<'a> {
    fn get_segment<'b>(&'b self, id: u32) -> Option<&'b [Word]> {
        if id < self.segment_slices.len() as u32 {
            let (a, b) = self.segment_slices[id as usize];
            Some(&self.words[a..b])
        } else {
            None
        }
    }
}

/// Reads a serialized message from a slice of words.
pub fn read_message_from_words<'a>(slice: &'a [Word],
                                   options: message::ReaderOptions)
                                   -> Result<message::Reader<SliceSegments<'a>>>
{
    let mut bytes = ::Word::words_to_bytes(slice);
    let (num_words, offsets) = try!(read_segment_table(&mut bytes, options));
    let words = ::Word::bytes_to_words(bytes);
    if num_words != words.len() {
        Err(Error::failed(
            format!("Wrong number of words. Header claimed {} words, but message has {} words",
                    num_words, words.len())))
    } else {
        Ok(message::Reader::new(SliceSegments { words: words, segment_slices: offsets }, options))
    }
}

pub struct OwnedSegments {
    segment_slices : Vec<(usize, usize)>,
    owned_space : Vec<Word>,
}

impl ::message::ReaderSegments for OwnedSegments {
    fn get_segment<'a>(&'a self, id: u32) -> Option<&'a [Word]> {
        if id < self.segment_slices.len() as u32 {
            let (a, b) = self.segment_slices[id as usize];
            Some(&self.owned_space[a..b])
        } else {
            None
        }
    }
}

/// Reads a serialized message from a stream with the provided options.
///
/// For optimal performance, `read` should be a buffered reader type.
pub fn read_message<R>(read: &mut R, options: message::ReaderOptions) -> Result<message::Reader<OwnedSegments>>
where R: Read {
    let (total_words, segment_slices) = try!(read_segment_table(read, options));
    read_segments(read, total_words, segment_slices, options)
}

/// Reads a segment table from `read` and returns the total number of words across all
/// segments, as well as the segment offsets.
///
/// The segment table format for streams is defined in the Cap'n Proto
/// [encoding spec](https://capnproto.org/encoding.html)
fn read_segment_table<R>(read: &mut R,
                         options: message::ReaderOptions)
                         -> Result<(usize, Vec<(usize, usize)>)>
    where R: Read
{
    let mut buf: [u8; 8] = [0; 8];

    // read the first Word, which contains segment_count and the 1st segment length
    try!(read_exact(read, &mut buf));
    let segment_count = <LittleEndian as ByteOrder>::read_u32(&buf[0..4])
                                                   .wrapping_add(1) as usize;

    if segment_count >= 512 {
        return Err(Error::failed(format!("Too many segments: {}", segment_count)))
    } else if segment_count == 0 {
        return Err(Error::failed(format!("Too few segments: {}", segment_count)))
    }

    let mut segment_slices = Vec::with_capacity(segment_count);
    let mut total_words = <LittleEndian as ByteOrder>::read_u32(&buf[4..8]) as usize;
    segment_slices.push((0, total_words));

    if segment_count > 1 {
        if segment_count < 4 {
            try!(read_exact(read, &mut buf));
            for idx in 0..(segment_count - 1) {
                let segment_len =
                    <LittleEndian as ByteOrder>::read_u32(&buf[(idx * 4)..(idx + 1) * 4]) as usize;

                segment_slices.push((total_words, total_words + segment_len));
                total_words += segment_len;
            }
        } else {
            let mut segment_sizes = vec![0u8; (segment_count & !1) * 4];
            try!(read_exact(read, &mut segment_sizes[..]));
            for idx in 0..(segment_count - 1) {
                let segment_len =
                    <LittleEndian as ByteOrder>::read_u32(&segment_sizes[(idx * 4)..(idx + 1) * 4]) as usize;

                segment_slices.push((total_words, total_words + segment_len));
                total_words += segment_len;
            }
        }
    }

    // Don't accept a message which the receiver couldn't possibly traverse without hitting the
    // traversal limit. Without this check, a malicious client could transmit a very large segment
    // size to make the receiver allocate excessive space and possibly crash.
    if total_words as u64 > options.traversal_limit_in_words  {
        return Err(Error::failed(
            format!("Message has {} words, which is too large. To increase the limit on the \
             receiving end, see capnp::message::ReaderOptions.", total_words)))
    }

    Ok((total_words, segment_slices))
}

/// Reads segments from `read`.
fn read_segments<R>(read: &mut R,
                    total_words: usize,
                    segment_slices: Vec<(usize, usize)>,
                    options: message::ReaderOptions)
                    -> Result<message::Reader<OwnedSegments>>
where R: Read {
    let mut owned_space: Vec<Word> = Word::allocate_zeroed_vec(total_words);
    try!(read_exact(read, Word::words_to_bytes_mut(&mut owned_space[..])));
    let segments = OwnedSegments {segment_slices: segment_slices, owned_space: owned_space};
    Ok(::message::Reader::new(segments, options))
}

/// Constructs a flat vector containing the entire message.
pub fn write_message_to_words<A>(message: &message::Builder<A>) -> Vec<Word>
    where A: message::Allocator
{
    flatten_segments(&*message.get_segments_for_output())
}

fn flatten_segments(segments: &[&[Word]]) -> Vec<Word> {
    let word_count = compute_serialized_size(&*segments);
    let table_size = segments.len() / 2 + 1;
    let mut result = Vec::with_capacity(word_count);
    for _ in 0..table_size {
        result.push(Word { raw_content: 0 });
    }
    {
        let mut bytes = ::Word::words_to_bytes_mut(&mut result[..]);
        write_segment_table(&mut bytes, &*segments).expect("Failed to write segment table.");
    }
    for segment in &*segments {
        for idx in 0..segment.len() {
            result.push(segment[idx]);
        }
    }
    result
}

/// Writes the provided message to `write`.
///
/// For optimal performance, `write` should be a buffered writer. `flush` will not be called on
/// the writer.
pub fn write_message<W, A>(write: &mut W, message: &message::Builder<A>) -> ::std::io::Result<()>
where W: Write, A: message::Allocator {
    let segments = message.get_segments_for_output();
    try!(write_segment_table(write, &*segments));
    write_segments(write, &*segments)
}

/// Writes a segment table to `write`.
///
/// `segments` must contain at least one segment.
fn write_segment_table<W>(write: &mut W, segments: &[&[Word]]) -> ::std::io::Result<()>
where W: Write {
    let mut buf: [u8; 8] = [0; 8];
    let segment_count = segments.len();

    // write the first Word, which contains segment_count and the 1st segment length
    <LittleEndian as ByteOrder>::write_u32(&mut buf[0..4], segment_count as u32 - 1);
    <LittleEndian as ByteOrder>::write_u32(&mut buf[4..8], segments[0].len() as u32);
    try!(write.write_all(&buf));

    if segment_count > 1 {
        if segment_count < 4 {
            for idx in 1..segment_count {
                <LittleEndian as ByteOrder>::write_u32(
                    &mut buf[(idx - 1) * 4..idx * 4], segments[idx].len() as u32);
            }
            if segment_count == 2 {
                for idx in 4..8 { buf[idx] = 0 }
            }
            try!(write.write_all(&buf));
        } else {
            let mut buf = vec![0; (segment_count & !1) * 4];
            for idx in 1..segment_count {
                <LittleEndian as ByteOrder>::write_u32(
                    &mut buf[(idx - 1) * 4..idx * 4], segments[idx].len() as u32);
            }
            if segment_count % 2 == 0 {
                for idx in (buf.len() - 4)..(buf.len()) { buf[idx] = 0 }
            }
            try!(write.write_all(&buf));
        }
    }
    Ok(())
}

/// Writes segments to `write`.
fn write_segments<W>(write: &mut W, segments: &[&[Word]]) -> ::std::io::Result<()>
where W: Write {
    for segment in segments {
        try!(write.write_all(Word::words_to_bytes(segment)));
    }
    Ok(())
}

fn compute_serialized_size(segments: &[&[Word]]) -> usize {
    // Table size
    let mut size = (segments.len() / 2) + 1;
    for segment in &*segments {
        size += segment.len();
    }
    size
}

/// Returns the number of words required to serialize the message.
pub fn compute_serialized_size_in_words<A>(message: &::message::Builder<A>) -> usize
    where A: ::message::Allocator
{
    compute_serialized_size(&*message.get_segments_for_output())
}

#[cfg(test)]
pub mod test {

    use std::io::{Cursor, Write};

    use quickcheck::{quickcheck, TestResult};

    use {Word};
    use message;
    use message::ReaderSegments;
    use super::{read_message, read_message_from_words, flatten_segments,
                read_segment_table, write_segment_table, write_segments};

    /// Writes segments as if they were a Capnproto message.
    pub fn write_message_segments<W>(write: &mut W, segments: &Vec<Vec<Word>>) where W: Write {
        let borrowed_segments: &[&[Word]] = &segments.iter()
                                                     .map(|segment| &segment[..])
                                                     .collect::<Vec<_>>()[..];
        write_segment_table(write, borrowed_segments).unwrap();
        write_segments(write, borrowed_segments).unwrap();
    }

    #[test]
    fn test_read_segment_table() {

        let mut buf = vec![];

        buf.extend([0,0,0,0, // 1 segments
                    0,0,0,0] // 0 length
                    .iter().cloned());
        let (words, segment_slices) = read_segment_table(&mut Cursor::new(&buf[..]),
                                                         message::ReaderOptions::new()).unwrap();
        assert_eq!(0, words);
        assert_eq!(vec![(0,0)], segment_slices);
        buf.clear();

        buf.extend([0,0,0,0, // 1 segments
                    1,0,0,0] // 1 length
                    .iter().cloned());
        let (words, segment_slices) = read_segment_table(&mut Cursor::new(&buf[..]),
                                                         message::ReaderOptions::new()).unwrap();
        assert_eq!(1, words);
        assert_eq!(vec![(0,1)], segment_slices);
        buf.clear();

        buf.extend([1,0,0,0, // 2 segments
                    1,0,0,0, // 1 length
                    1,0,0,0, // 1 length
                    0,0,0,0] // padding
                    .iter().cloned());
        let (words, segment_slices) = read_segment_table(&mut Cursor::new(&buf[..]),
                                                         message::ReaderOptions::new()).unwrap();
        assert_eq!(2, words);
        assert_eq!(vec![(0,1), (1, 2)], segment_slices);
        buf.clear();

        buf.extend([2,0,0,0, // 3 segments
                    1,0,0,0, // 1 length
                    1,0,0,0, // 1 length
                    0,1,0,0] // 256 length
                    .iter().cloned());
        let (words, segment_slices) = read_segment_table(&mut Cursor::new(&buf[..]),
                                                         message::ReaderOptions::new()).unwrap();
        assert_eq!(258, words);
        assert_eq!(vec![(0,1), (1, 2), (2, 258)], segment_slices);
        buf.clear();

        buf.extend([3,0,0,0,  // 4 segments
                    77,0,0,0, // 77 length
                    23,0,0,0, // 23 length
                    1,0,0,0,  // 1 length
                    99,0,0,0, // 99 length
                    0,0,0,0]  // padding
                    .iter().cloned());
        let (words, segment_slices) = read_segment_table(&mut Cursor::new(&buf[..]),
                                                         message::ReaderOptions::new()).unwrap();
        assert_eq!(200, words);
        assert_eq!(vec![(0,77), (77, 100), (100, 101), (101, 200)], segment_slices);
        buf.clear();
    }

    #[test]
    fn test_read_invalid_segment_table() {

        let mut buf = vec![];

        buf.extend([0,2,0,0].iter().cloned()); // 513 segments
        buf.extend([0; 513 * 4].iter().cloned());
        assert!(read_segment_table(&mut Cursor::new(&buf[..]),
                                   message::ReaderOptions::new()).is_err());
        buf.clear();

        buf.extend([0,0,0,0].iter().cloned()); // 1 segments
        assert!(read_segment_table(&mut Cursor::new(&buf[..]),
                                   message::ReaderOptions::new()).is_err());
        buf.clear();

        buf.extend([0,0,0,0].iter().cloned()); // 1 segments
        buf.extend([0; 3].iter().cloned());
        assert!(read_segment_table(&mut Cursor::new(&buf[..]),
                                   message::ReaderOptions::new()).is_err());
        buf.clear();

        buf.extend([255,255,255,255].iter().cloned()); // 0 segments
        assert!(read_segment_table(&mut Cursor::new(&buf[..]),
                                   message::ReaderOptions::new()).is_err());
        buf.clear();
    }

    #[test]
    fn test_write_segment_table() {

        let mut buf = vec![];

        let segment_0 = [capnp_word!(0,0,0,0,0,0,0,0); 0];
        let segment_1 = [capnp_word!(1,1,1,1,1,1,1,1); 1];
        let segment_199 = [capnp_word!(201,202,203,204,205,206,207,208); 199];

        write_segment_table(&mut buf, &[&segment_0]).unwrap();
        assert_eq!(&[0,0,0,0,  // 1 segments
                     0,0,0,0], // 0 length
                   &buf[..]);
        buf.clear();

        write_segment_table(&mut buf, &[&segment_1]).unwrap();
        assert_eq!(&[0,0,0,0,  // 1 segments
                     1,0,0,0], // 1 length
                   &buf[..]);
        buf.clear();

        write_segment_table(&mut buf, &[&segment_199]).unwrap();
        assert_eq!(&[0,0,0,0,    // 1 segments
                     199,0,0,0], // 199 length
                   &buf[..]);
        buf.clear();

        write_segment_table(&mut buf, &[&segment_0, &segment_1]).unwrap();
        assert_eq!(&[1,0,0,0,  // 2 segments
                     0,0,0,0,  // 0 length
                     1,0,0,0,  // 1 length
                     0,0,0,0], // padding
                   &buf[..]);
        buf.clear();

        write_segment_table(&mut buf,
                            &[&segment_199, &segment_1, &segment_199, &segment_0]).unwrap();
        assert_eq!(&[3,0,0,0,   // 4 segments
                     199,0,0,0, // 199 length
                     1,0,0,0,   // 1 length
                     199,0,0,0, // 199 length
                     0,0,0,0,   // 0 length
                     0,0,0,0],  // padding
                   &buf[..]);
        buf.clear();

        write_segment_table(&mut buf,
                            &[&segment_199, &segment_1, &segment_199, &segment_0, &segment_1]).unwrap();
        assert_eq!(&[4,0,0,0,   // 5 segments
                     199,0,0,0, // 199 length
                     1,0,0,0,   // 1 length
                     199,0,0,0, // 199 length
                     0,0,0,0,   // 0 length
                     1,0,0,0],  // 1 length
                   &buf[..]);
        buf.clear();
    }

    #[test]
    fn check_round_trip() {
        fn round_trip(segments: Vec<Vec<Word>>) -> TestResult {
            if segments.len() == 0 { return TestResult::discard(); }
            let mut cursor = Cursor::new(Vec::new());

            write_message_segments(&mut cursor, &segments);
            cursor.set_position(0);

            let message = read_message(&mut cursor, message::ReaderOptions::new()).unwrap();
            let result_segments = message.into_segments();

            TestResult::from_bool(segments.iter().enumerate().all(|(i, segment)| {
                &segment[..] == result_segments.get_segment(i as u32).unwrap()
            }))
        }

        quickcheck(round_trip as fn(Vec<Vec<Word>>) -> TestResult);
    }

    #[test]
    fn check_round_trip_slice_segments() {
        fn round_trip(segments: Vec<Vec<Word>>) -> TestResult {
            if segments.len() == 0 { return TestResult::discard(); }
            let borrowed_segments: &[&[Word]] = &segments.iter()
                                                     .map(|segment| &segment[..])
                                                     .collect::<Vec<_>>()[..];
            let words = flatten_segments(&borrowed_segments);
            let message = read_message_from_words(&words[..], message::ReaderOptions::new()).unwrap();
            let result_segments = message.into_segments();

            TestResult::from_bool(segments.iter().enumerate().all(|(i, segment)| {
                &segment[..] == result_segments.get_segment(i as u32).unwrap()
            }))
        }

        quickcheck(round_trip as fn(Vec<Vec<Word>>) -> TestResult);
    }
}