
We will define the language, L, of our rational number calculator program.

Define the set of non-terminal symbols to be

N = {expr, add,mult, neg, exp, fact, term, s, dec, int, at, digit, prev}.

Define the set of terminal symbols to be

Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, .,+,−, ∗, /, ˆ, !, |(,),@,=, space, lf, q}.

Define the production rules, P , as the following:

1. expr → s add s lf | s = s at s lf | s = s digit at s lf | s lf | s q s lf

2. add → add s + s mult | add s − s mult | mult

3. mult → mult s ∗ s neg | mult s / s neg | neg

4. neg → − s neg | exp

5. exp → fact s ˆ s neg | fact

6. fact → fact! | term

7. term → dec | at | |s add s| | (s add s)

8. s → space s | ϵ

9. dec → int | int.int

10. int → digit | digit int

11. at → @ | @prev

12. digit → prev | 0 | 9

13. prev → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8

Note that the use of spaces above is purely for visualization purposes (e.g.,
digit int does not actually have a space). Define the start symbol to be expr.
Define the unambiguous, context-free grammar to be

G = (N,Σ, P, expr).

Let L(G) be the language generated from G. Let @ = @1, and @prev represent
the prevth most-recent result. lf is the Unicode scalar value U+000A, space
is the Unicode scalar value U+0020, and ϵ is the empty string. We define
Q ⊂ L ⊂ L(G) with Q representing the field of rational numbers such that L
extends Q with the ability to recall the previous one to eight results as well
as adds the unary operators ||, −, and ! as well as the binary operator ˆ to
mean absolute value, negation, factorial, and exponentiation respectively. Note
that this means for mult/exp, exp does not evaluate to 0. Similarly, termˆexp
is valid iff term evaluates to 1, term evaluates to 0 and exp evaluates to a
non-negative rational number—00 is defined to be 1—or term evaluates to any

other rational number and exp evaluates to an integer. ! is only defined for non-
negative integers. @prev is only defined iff at least prev number of previous
expressions have been evaluated. From the above grammar, we see the operator
precedence in descending order is the following:

1. (), ||

2. !

3. ˆ

4. − (the unary negation operator)

5. ∗, /

6. +, −

with ˆ being right-associative and the rest of the binary operators being left-
associative. Last, for j ∈ N and dj ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} ⊂ Z, we have

d0d1 · · · dn.dn+1 · · · dn+i = (d0 ∗ 10n + d1 ∗ 10n−1 + · · ·+ dn ∗ 100

+ dn+1 ∗ 10−1 + · · ·+ dn+i ∗ 10−i)

where for k ∈ N

10k =

k︷ ︸︸ ︷
10 ∗ 10 ∗ · · · ∗ 10

and for l ∈ Z−

10l =

|l|︷ ︸︸ ︷
1/10 ∗ 1/10 ∗ · · · ∗ 1/10 .

As a consequence of above, we have the following example:

1/1.5 = 1/(3/2) = 2/3 ̸= 1/6 = 1/3/2.

For n ∈ N we define the factorial operator as

n! = n ∗ (n− 1) ∗ · · · ∗ 1

which of course equals 1 when n = 0.

For the empty expression and the exit (i.e., q) and “recall” statements (i.e.,
statements that have =), the previous results are left in tact; all other expres-
sions push the evaluated result to be the next previous result. Recall statements
are used purely to display a previous value with the option to round to digit
number of fractional digits using normal rounding rules. For example,

4

@

4 + @2

returns 4, stores 4 as the previous result, returns 4, pushes 4 to be the second-
most previous result, pushes 4 to be the previous result, returns 8, pushes 4
to be the third-most previous result, pushes 4 to be the second-most previous
result, and pushes 8 to be the most previous result. In contrast,

4

= @

4 + @2

returns 4, stores 4 as the previous result, returns 4, and fails since the last line
is not part of our language L since there is no second-previous result.

