We will define the language, L, of our rational number calculator program.

Define the set of non-terminal symbols to be
N = {expr,add, mult, neg, exp, fact, term, s, dec, int, at, digit, prev}.
Define the set of terminal symbols to be
E = {07 1a2a3547576a7a8597'7+7 _a*a/a A7!7 \(,),@,Z,space,lf,q}.
Define the production rules, P, as the following:
1. expr > sadd slf |s = satslf|s = sdigitatslf|slf|sqslf
add — add s + s mult | add s — s mult | mult
mult — mult s * s neg | mult s / s neg | neg
neg — — s neg | exp
exp — fact s~ s neg | fact
fact — fact! | term

term — dec | at | |s add s| | (s add s)

s — space s | €

© ® N e N

dec — int | int.int

H
e

int — digit | digit int

—
—

. at — Q| @prev

—
[\

. digit - prev | 0] 9
13. prev —>11213|4]|5]6]|7]|8

Note that the use of spaces above is purely for visualization purposes (e.g.,
digit int does not actually have a space). Define the start symbol to be expr.
Define the unambiguous, context-free grammar to be

G = (N,X, P,expr).

Let £(G) be the language generated from G. Let @ = @1, and @prev represent
the prev!™ most-recent result. If is the Unicode scalar value U+000A, space
is the Unicode scalar value U40020, and € is the empty string. We define
Q C L C L(G) with Q representing the field of rational numbers such that L
extends Q with the ability to recall the previous one to eight results as well
as adds the unary operators ||, —, and ! as well as the binary operator ~ to
mean absolute value, negation, factorial, and exponentiation respectively. Note
that this means for mult/exp, exp does not evaluate to 0. Similarly, term”exp
is valid iff term evaluates to 1, term evaluates to 0 and exp evaluates to a
non-negative rational number—0 is defined to be 1-—or term evaluates to any

other rational number and exp evaluates to an integer. ! is only defined for non-
negative integers. @prev is only defined iff at least prev number of previous
expressions have been evaluated. From the above grammar, we see the operator
precedence in descending order is the following:

L0l
L

2
3
4. — (the unary negation operator)
5

Lok, /
6. +, —
with ~ being right-associative and the rest of the binary operators being left-
associative. Last, for j € Nand d; € {0,1,2,3,4,5,6,7,8,9} C Z, we have
dody -+ dpdryr -+ dngi = (do * 10" +dy % 10" -+ 4 dy, * 10°
+ dp1 %107 - dypy %+ 1077)

where for k € N .

—f——
10F =10%10 % --- % 10

and for | € Z~ "
l

10 =1/10%1/10 % --- % 1/10.

As a consequence of above, we have the following example:
1/1.5=1/(3/2) =2/3#1/6 =1/3/2.
For n € N we define the factorial operator as
nl=nx(n—-1)%---x1

which of course equals 1 when n = 0.

For the empty expression and the exit (i.e., ¢) and “recall” statements (i.e.,
statements that have =), the previous results are left in tact; all other expres-
sions push the evaluated result to be the next previous result. Recall statements
are used purely to display a previous value with the option to round to digit
number of fractional digits using normal rounding rules. For example,

4
Q
4+ @2

returns 4, stores 4 as the previous result, returns 4, pushes 4 to be the second-
most previous result, pushes 4 to be the previous result, returns 8, pushes 4
to be the third-most previous result, pushes 4 to be the second-most previous
result, and pushes 8 to be the most previous result. In contrast,

4
=@
4+ @2

returns 4, stores 4 as the previous result, returns 4, and fails since the last line
is not part of our language L since there is no second-previous result.

