1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
/*!
Implementation of various caches

*/

use std::collections::{HashMap, LinkedList};
use std::collections::linked_list::Iter;
use std::time::Instant;
use std::hash::Hash;
use std::cmp::Eq;

use super::Cached;


/// Default unbounded cache
///
/// This cache has no size limit or eviction policy.
///
/// Note: This cache is in-memory only
pub struct UnboundCache<K, V> {
    store: HashMap<K, V>,
    hits: u32,
    misses: u32,
}

impl <K: Hash + Eq, V> UnboundCache<K, V> {
    /// Creates an empty `UnboundCache`
    pub fn new() -> UnboundCache<K, V> {
        UnboundCache {
            store: HashMap::new(),
            hits: 0,
            misses: 0,
        }
    }

    /// Creates an empty `UnboundCache` with a given pre-allocated capacity
    pub fn with_capacity(size: usize) -> UnboundCache<K, V> {
        UnboundCache {
            store: HashMap::with_capacity(size),
            hits: 0,
            misses: 0,
        }
    }
}

impl <K: Hash + Eq, V> Cached<K, V> for UnboundCache<K, V> {
    fn cache_get(&mut self, key: &K) -> Option<&V> {
        match self.store.get(key) {
            Some(v) => {
                self.hits += 1;
                Some(v)
            }
            None =>  {
                self.misses += 1;
                None
            }
        }
    }
    fn cache_set(&mut self, key: K, val: V) {
        self.store.insert(key, val);
    }
    fn cache_remove(&mut self, k: &K) -> Option<V> { self.store.remove(k) }
    fn cache_clear(&mut self) { self.store = HashMap::new(); }
    fn cache_size(&self) -> usize { self.store.len() }
    fn cache_hits(&self) -> Option<u32> { Some(self.hits) }
    fn cache_misses(&self) -> Option<u32> { Some(self.misses) }
}


enum Slot<T> {
    Occupied(T),
    Empty,
}
impl<T> Slot<T> {
    fn get(&self) -> Option<&T> {
        match self {
            &Slot::Occupied(ref v) => Some(v),
            &Slot::Empty => None,
        }
    }

    fn take(self) -> Option<T> {
        match self {
            Slot::Occupied(v) => Some(v),
            Slot::Empty => None,
        }
    }
}


/// Least Recently Used / `Sized` Cache
///
/// Stores up to a specified size before beginning
/// to evict the least recently used keys
///
/// Note: This cache is in-memory only
pub struct SizedCache<K, V> {
    store: HashMap<K, Slot<V>>,
    order: LinkedList<K>,
    capacity: usize,
    hits: u32,
    misses: u32,
}

impl<K: Hash + Eq, V> SizedCache<K, V> {
    #[deprecated(since="0.5.1", note="method renamed to `with_size`")]
    pub fn with_capacity(size: usize) -> SizedCache<K, V> {
        Self::with_size(size)
    }

    /// Creates a new `SizedCache` with a given size limit and pre-allocated backing data
    pub fn with_size(size: usize) -> SizedCache<K, V> {
        if size == 0 { panic!("`size` of `SizedCache` must be greater than zero.") }
        SizedCache {
            store: HashMap::with_capacity(size),
            order: LinkedList::new(),
            capacity: size,
            hits: 0,
            misses: 0,
        }
    }

    /// Return an iterator of keys in the current order from most
    /// to least recently used.
    pub fn key_order(&self) -> Iter<K> {
        self.order.iter()
    }
}

impl<K: Hash + Eq + Clone, V> Cached<K, V> for SizedCache<K, V> {
    fn cache_get(&mut self, key: &K) -> Option<&V> {
        let val = self.store.get(key);
        match val {
            Some(slot) => {
                // if there's something in `self.store`, then `self.order`
                // cannot be empty, and `key` must be present
                let index = self.order.iter().enumerate()
                                .find(|&(_, e)| { key == e })
                                .expect("SizedCache::cache_get key not found in ordering").0;
                let mut tail = self.order.split_off(index);
                let used = tail.pop_front().expect("SizedCache::cache_get ordering is empty");
                self.order.push_front(used);
                self.order.append(&mut tail);
                self.hits += 1;
                Some(slot.get().expect("SizedCache::cache_get slots should never be empty"))
            }
            None => {
                self.misses += 1;
                None
            }
        }
    }
    fn cache_set(&mut self, key: K, val: V) {
        if self.store.len() >= self.capacity {
            // store has reached capacity, evict the oldest item.
            // store capacity cannot be zero, so there must be content in `self.order`.
            let lru_key = self.order.pop_back().expect("SizedCache::cache_set ordering is empty");
            self.store.remove(&lru_key).expect("SizedCache::cache_set failed evicting cache key");
        }
        let slot = self.store.entry(key.clone()).or_insert(Slot::Empty);
        match slot {
            Slot::Empty => self.order.push_front(key),
            _ => (),
        }
        *slot = Slot::Occupied(val);
    }
    fn cache_remove(&mut self, k: &K) -> Option<V> {
        // try and remove item from mapping, and then from order list if it was in mapping
        let removed = self.store.remove(k);
        if removed.is_some() {
            // need to remove the key in the order list
            let index = self.order.iter().enumerate()
                    .find(|&(_, e)| { k == e })
                    .expect("SizedCache::cache_remove key not found in ordering").0;
            let mut tail = self.order.split_off(index);
            tail.pop_front().expect("SizedCache::cache_remove ordering is empty");
            self.order.append(&mut tail);

            let slot = removed.expect("SizedCache::cache_remove slot is empty");

            slot.take()
        }
        else {
            None
        }
    }
    fn cache_clear(&mut self) {
        // clear both the store and the order list
        self.store.clear();
        self.order.clear();
    }
    fn cache_size(&self) -> usize { self.store.len() }
    fn cache_hits(&self) -> Option<u32> { Some(self.hits) }
    fn cache_misses(&self) -> Option<u32> { Some(self.misses) }
    fn cache_capacity(&self) -> Option<usize> { Some(self.capacity) }
}


/// Enum used for defining the status of time-cached values
enum Status {
    NotFound,
    Found,
    Expired,
}


/// Cache store bound by time
///
/// Values are timestamped when inserted and are
/// evicted if expired at time of retrieval.
///
/// Note: This cache is in-memory only
pub struct TimedCache<K, V> {
    store: HashMap<K, (Instant, V)>,
    seconds: u64,
    hits: u32,
    misses: u32,
}

impl<K: Hash + Eq, V> TimedCache<K, V> {
    /// Creates a new `TimedCache` with a specified lifespan
    pub fn with_lifespan(seconds: u64) -> TimedCache<K, V> {
        TimedCache {
            store: HashMap::new(),
            seconds: seconds,
            hits: 0,
            misses: 0,
        }
    }

    /// Creates a new `TimedCache` with a specified lifespan and
    /// cache-store with the specified pre-allocated capacity
    pub fn with_lifespan_and_capacity(seconds: u64, size: usize) -> TimedCache<K, V> {
        TimedCache {
            store: HashMap::with_capacity(size),
            seconds: seconds,
            hits: 0,
            misses: 0,
        }
    }
}

impl<K: Hash + Eq, V> Cached<K, V> for TimedCache<K, V> {
    fn cache_get(&mut self, key: &K) -> Option<&V> {
        let status = {
            let val = self.store.get(key);
            if let Some(&(instant, _)) = val {
                if instant.elapsed().as_secs() < self.seconds {
                    Status::Found
                } else {
                    Status::Expired
                }
            } else {
                 Status::NotFound
            }
        };
        match status {
            Status::NotFound => {
                self.misses += 1;
                None
            }
            Status::Found    => {
                self.hits += 1;
                self.store.get(key).map(|stamped| &stamped.1)
            }
            Status::Expired  => {
                self.misses += 1;
                self.store.remove(key).unwrap();
                None
            }
        }
    }
    fn cache_set(&mut self, key: K, val: V) {
        let stamped = (Instant::now(), val);
        self.store.insert(key, stamped);
    }
    fn cache_remove(&mut self, k: &K) -> Option<V> { self.store.remove(k).map(|(_, v)| v) }
    fn cache_clear(&mut self) { self.store.clear(); }
    fn cache_size(&self) -> usize {
        self.store.len()
    }
    fn cache_hits(&self) -> Option<u32> { Some(self.hits) }
    fn cache_misses(&self) -> Option<u32> { Some(self.misses) }
    fn cache_lifespan(&self) -> Option<u64> { Some(self.seconds) }
}


#[cfg(test)]
/// Cache store tests
mod tests {
    use std::time::Duration;
    use std::thread::sleep;

    use super::Cached;

    use super::UnboundCache;
    use super::SizedCache;
    use super::TimedCache;

    #[test]
    fn basic_cache() {
        let mut c = UnboundCache::new();
        assert!(c.cache_get(&1).is_none());
        let misses = c.cache_misses().unwrap();
        assert_eq!(1, misses);

        c.cache_set(1, 100);
        assert!(c.cache_get(&1).is_some());
        let hits = c.cache_hits().unwrap();
        let misses = c.cache_misses().unwrap();
        assert_eq!(1, hits);
        assert_eq!(1, misses);
    }

    #[test]
    fn sized_cache() {
        let mut c = SizedCache::with_size(5);
        assert!(c.cache_get(&1).is_none());
        let misses = c.cache_misses().unwrap();
        assert_eq!(1, misses);

        c.cache_set(1, 100);
        assert!(c.cache_get(&1).is_some());
        let hits = c.cache_hits().unwrap();
        let misses = c.cache_misses().unwrap();
        assert_eq!(1, hits);
        assert_eq!(1, misses);

        c.cache_set(2, 100);
        c.cache_set(3, 100);
        c.cache_set(4, 100);
        c.cache_set(5, 100);

        assert_eq!(c.key_order().cloned().collect::<Vec<_>>(), [5, 4, 3, 2, 1]);

        c.cache_set(6, 100);
        c.cache_set(7, 100);

        assert_eq!(c.key_order().cloned().collect::<Vec<_>>(), [7, 6, 5, 4, 3]);

        assert!(c.cache_get(&2).is_none());
        assert!(c.cache_get(&3).is_some());

        assert_eq!(c.key_order().cloned().collect::<Vec<_>>(), [3, 7, 6, 5, 4]);

        assert_eq!(2, c.cache_misses().unwrap());
        let size = c.cache_size();
        assert_eq!(5, size);
    }

    #[test]
    /// This is a regression test to confirm that racing cache sets on a SizedCache
    /// do not cause duplicates to exist in the internal `order`. See issue #7
    fn size_cache_racing_keys_eviction_regression() {
        let mut c = SizedCache::with_size(2);
        c.cache_set(1, 100);
        c.cache_set(1, 100);
        // size would be 1, but internal ordered would be [1, 1]
        c.cache_set(2, 100);
        c.cache_set(3, 100);
        // this next set would fail because a duplicate key would be evicted
        c.cache_set(4, 100);
    }

    #[test]
    fn timed_cache() {
        let mut c = TimedCache::with_lifespan(2);
        assert!(c.cache_get(&1).is_none());
        let misses = c.cache_misses().unwrap();
        assert_eq!(1, misses);

        c.cache_set(1, 100);
        assert!(c.cache_get(&1).is_some());
        let hits = c.cache_hits().unwrap();
        let misses = c.cache_misses().unwrap();
        assert_eq!(1, hits);
        assert_eq!(1, misses);

        sleep(Duration::new(2, 0));
        assert!(c.cache_get(&1).is_none());
        let misses = c.cache_misses().unwrap();
        assert_eq!(2, misses);
    }

    #[test]
    fn clear() {
        let mut c = UnboundCache::new();

        c.cache_set(1, 100);
        c.cache_set(2, 200);
        c.cache_set(3, 300);

        // register some hits and misses
        c.cache_get(&1);
        c.cache_get(&2);
        c.cache_get(&3);
        c.cache_get(&10);
        c.cache_get(&20);
        c.cache_get(&30);

        assert_eq!(3, c.cache_size());
        assert_eq!(3, c.cache_hits().unwrap());
        assert_eq!(3, c.cache_misses().unwrap());

        // clear the cache, should have no more elements
        // hits and misses will still be kept
        c.cache_clear();

        assert_eq!(0, c.cache_size());
        assert_eq!(3, c.cache_hits().unwrap());
        assert_eq!(3, c.cache_misses().unwrap());

        let mut c = SizedCache::with_size(3);

        c.cache_set(1, 100);
        c.cache_set(2, 200);
        c.cache_set(3, 300);
        c.cache_clear();

        assert_eq!(0, c.cache_size());

        let mut c = TimedCache::with_lifespan(3600);

        c.cache_set(1, 100);
        c.cache_set(2, 200);
        c.cache_set(3, 300);
        c.cache_clear();

        assert_eq!(0, c.cache_size());
    }

    #[test]
    fn remove() {
        let mut c = UnboundCache::new();

        c.cache_set(1, 100);
        c.cache_set(2, 200);
        c.cache_set(3, 300);

        // register some hits and misses
        c.cache_get(&1);
        c.cache_get(&2);
        c.cache_get(&3);
        c.cache_get(&10);
        c.cache_get(&20);
        c.cache_get(&30);

        assert_eq!(3, c.cache_size());
        assert_eq!(3, c.cache_hits().unwrap());
        assert_eq!(3, c.cache_misses().unwrap());

        // remove some items from cache
        // hits and misses will still be kept
        assert_eq!(Some(100), c.cache_remove(&1));

        assert_eq!(2, c.cache_size());
        assert_eq!(3, c.cache_hits().unwrap());
        assert_eq!(3, c.cache_misses().unwrap());

        assert_eq!(Some(200), c.cache_remove(&2));

        assert_eq!(1, c.cache_size());

        // removing extra is ok
        assert_eq!(None, c.cache_remove(&2));

        assert_eq!(1, c.cache_size());

        let mut c = SizedCache::with_size(3);

        c.cache_set(1, 100);
        c.cache_set(2, 200);
        c.cache_set(3, 300);

        assert_eq!(Some(100), c.cache_remove(&1));
        assert_eq!(2, c.cache_size());

        assert_eq!(Some(200), c.cache_remove(&2));
        assert_eq!(1, c.cache_size());

        assert_eq!(None, c.cache_remove(&2));
        assert_eq!(1, c.cache_size());

        assert_eq!(Some(300), c.cache_remove(&3));
        assert_eq!(0, c.cache_size());

        let mut c = TimedCache::with_lifespan(3600);

        c.cache_set(1, 100);
        c.cache_set(2, 200);
        c.cache_set(3, 300);

        assert_eq!(Some(100), c.cache_remove(&1));
        assert_eq!(2, c.cache_size());
    }
}