1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
/*!

**A fast bump allocation arena for Rust.**

[![](https://docs.rs/bumpalo/badge.svg)](https://docs.rs/bumpalo/)
[![](https://img.shields.io/crates/v/bumpalo.svg)](https://crates.io/crates/bumpalo)
[![](https://img.shields.io/crates/d/bumpalo.svg)](https://crates.io/crates/bumpalo)
[![Build Status](https://dev.azure.com/fitzgen/bumpalo/_apis/build/status/fitzgen.bumpalo?branchName=master)](https://dev.azure.com/fitzgen/bumpalo/_build/latest?definitionId=2&branchName=master)

![](https://github.com/fitzgen/bumpalo/raw/master/bumpalo.png)

## Bump Allocation

Bump allocation is a fast, but limited approach to allocation. We have a chunk
of memory, and we maintain a pointer within that memory. Whenever we allocate an
object, we do a quick test that we have enough capacity left in our chunk to
allocate the object and then update the pointer by the object's size. *That's
it!*

The disadvantage of bump allocation is that there is no general way to
deallocate individual objects or reclaim the memory region for a
no-longer-in-use object.

These trade offs make bump allocation well-suited for *phase-oriented*
allocations. That is, a group of objects that will all be allocated during the
same program phase, used, and then can all be deallocated together as a group.

## Deallocation en Masse, but No `Drop`

To deallocate all the objects in the arena at once, we can simply reset the bump
pointer back to the start of the arena's memory chunk. This makes mass
deallocation *extremely* fast, but allocated objects' `Drop` implementations are
not invoked.

## What happens when the memory chunk is full?

This implementation will allocate a new memory chunk from the global allocator
and then start bump allocating into this new memory chunk.

## Example

```
use bumpalo::Bump;
use std::u64;

struct Doggo {
    cuteness: u64,
    age: u8,
    scritches_required: bool,
}

// Create a new arena to bump allocate into.
let bump = Bump::new();

// Allocate values into the arena.
let scooter = bump.alloc(Doggo {
    cuteness: u64::max_value(),
    age: 8,
    scritches_required: true,
});

assert!(scooter.scritches_required);
```

## Collections

When the `"collections"` cargo feature is enabled, a fork of some of the `std`
library's collections are available in the `collections` module. These
collection types are modified to allocate their space inside `bumpalo::Bump`
arenas.

```rust
# #[cfg(feature = "collections")]
# {
use bumpalo::{Bump, collections::Vec};

// Create a new bump arena.
let bump = Bump::new();

// Create a vector of integers whose storage is backed by the bump arena. The
// vector cannot outlive its backing arena, and this property is enforced with
// Rust's lifetime rules.
let mut v = Vec::new_in(&bump);

// Push a bunch of integers onto `v`!
for i in 0..100 {
    v.push(i);
}
# }
```

Eventually [all `std` collection types will be parameterized by an
allocator](https://github.com/rust-lang/rust/issues/42774) and we can remove
this `collections` module and use the `std` versions.

## `#![no_std]` Support

Bumpalo is a `no_std` crate. It depends only on the `alloc` and `core` crates.

 */

#![deny(missing_debug_implementations)]
#![deny(missing_docs)]
#![no_std]

extern crate alloc as core_alloc;

#[cfg(feature = "collections")]
pub mod collections;

mod alloc;

use core::cell::Cell;
use core::iter;
use core::marker::PhantomData;
use core::mem;
use core::ptr::{self, NonNull};
use core::slice;
use core::str;
use core_alloc::alloc::{alloc, dealloc, Layout};

/// An arena to bump allocate into.
///
/// ## No `Drop`s
///
/// Objects that are bump-allocated will never have their `Drop` implementation
/// called — unless you do it manually yourself. This makes it relatively
/// easy to leak memory or other resources.
///
/// If you have a type which internally manages
///
/// * an allocation from the global heap (e.g. `Vec<T>`),
/// * open file descriptors (e.g. `std::fs::File`), or
/// * any other resource that must be cleaned up (e.g. an `mmap`)
///
/// and relies on its `Drop` implementation to clean up the internal resource,
/// then if you allocate that type with a `Bump`, you need to find a new way to
/// clean up after it yourself.
///
/// Potential solutions are
///
/// * calling [`drop_in_place`][drop_in_place] or using
///   [`std::mem::ManuallyDrop`][manuallydrop] to manually drop these types,
/// * using `bumpalo::collections::Vec` instead of `std::vec::Vec`, or
/// * simply avoiding allocating these problematic types within a `Bump`.
///
/// Note that not calling `Drop` is memory safe! Destructors are never
/// guaranteed to run in Rust, you can't rely on them for enforcing memory
/// safety.
///
/// [drop_in_place]: https://doc.rust-lang.org/stable/std/ptr/fn.drop_in_place.html
/// [manuallydrop]: https://doc.rust-lang.org/stable/std/mem/struct.ManuallyDrop.html
///
/// ## Example
///
/// ```
/// use bumpalo::Bump;
///
/// // Create a new bump arena.
/// let bump = Bump::new();
///
/// // Allocate values into the arena.
/// let forty_two = bump.alloc(42);
/// assert_eq!(*forty_two, 42);
///
/// // Mutable references are returned from allocation.
/// let mut s = bump.alloc("bumpalo");
/// *s = "the bump allocator; and also is a buffalo";
/// ```
#[derive(Debug)]
pub struct Bump {
    // The current chunk we are bump allocating within.
    current_chunk_footer: Cell<NonNull<ChunkFooter>>,
}

#[repr(C)]
#[derive(Debug)]
struct ChunkFooter {
    // Pointer to the start of this chunk allocation. This footer is always at
    // the end of the chunk.
    data: NonNull<u8>,

    // The layout of this chunk's allocation.
    layout: Layout,

    // Link to the previous chunk, if any.
    prev: Cell<Option<NonNull<ChunkFooter>>>,

    // Bump allocation finger that is always in the range `self.data..=self`.
    ptr: Cell<NonNull<u8>>,
}

impl Default for Bump {
    fn default() -> Bump {
        Bump::new()
    }
}

impl Drop for Bump {
    fn drop(&mut self) {
        unsafe {
            dealloc_chunk_list(Some(self.current_chunk_footer.get()));
        }
    }
}

#[inline]
unsafe fn dealloc_chunk_list(mut footer: Option<NonNull<ChunkFooter>>) {
    while let Some(f) = footer {
        footer = f.as_ref().prev.get();
        dealloc(f.as_ref().data.as_ptr(), f.as_ref().layout);
    }
}

// `Bump`s are safe to send between threads because nothing aliases its owned
// chunks until you start allocating from it. But by the time you allocate from
// it, the returned references to allocations borrow the `Bump` and therefore
// prevent sending the `Bump` across threads until the borrows end.
unsafe impl Send for Bump {}

#[inline]
pub(crate) fn round_up_to(n: usize, divisor: usize) -> Option<usize> {
    debug_assert!(divisor > 0);
    debug_assert!(divisor.is_power_of_two());
    Some(n.checked_add(divisor - 1)? & !(divisor - 1))
}

// After this point, we try to hit page boundaries instead of powers of 2
const PAGE_STRATEGY_CUTOFF: usize = 0x1000;

// We only support alignments of up to 16 bytes for iter_allocated_chunks.
const SUPPORTED_ITER_ALIGNMENT: usize = 16;
const CHUNK_ALIGN: usize = SUPPORTED_ITER_ALIGNMENT;
const FOOTER_SIZE: usize = mem::size_of::<ChunkFooter>();

// Assert that ChunkFooter is at most the supported alignment. This will give a compile time error if it is not the case
const _FOOTER_ALIGN_ASSERTION: bool = mem::align_of::<ChunkFooter>() <= CHUNK_ALIGN;
const _: [(); _FOOTER_ALIGN_ASSERTION as usize] = [()];

// Maximum typical overhead per allocation imposed by allocators.
const MALLOC_OVERHEAD: usize = 16;

// This is the overhead from malloc, footer and alignment. For instance, if
// we want to request a chunk of memory that has at least X bytes usable for
// allocations (where X is aligned to CHUNK_ALIGN), then we expect that the
// after adding a footer, malloc overhead and alignment, the chunk of memory
// the allocator actually sets asside for us is X+OVERHEAD rounded up to the
// nearest suitable size boundary.
const OVERHEAD: usize = (MALLOC_OVERHEAD + FOOTER_SIZE + (CHUNK_ALIGN - 1)) & !(CHUNK_ALIGN - 1);

// Choose a relatively small default initial chunk size, since we double chunk
// sizes as we grow bump arenas to amortize costs of hitting the global
// allocator.
const FIRST_ALLOCATION_GOAL: usize = (1 << 9);

// The actual size of the first allocation is going to be a bit smaller
// than the goal. We need to make room for the footer, and we also need
// take the alignment into account.
const DEFAULT_CHUNK_SIZE_WITHOUT_FOOTER: usize = FIRST_ALLOCATION_GOAL - OVERHEAD;

#[inline]
fn layout_for_array<T>(len: usize) -> Option<Layout> {
    // TODO: use Layout::array once the rust feature `alloc_layout_extra`
    // gets stabilized
    //
    // According to https://doc.rust-lang.org/reference/type-layout.html#size-and-alignment
    // the size of a value is always a multiple of it's alignment. But that does not seem to match
    // with https://doc.rust-lang.org/std/alloc/struct.Layout.html#method.from_size_align
    //
    // Let's be on the safe size and round up to the padding in any case.
    //
    // An interesting question is whether there needs to be padding at the end of
    // the last object in the array. Again, we take the safe approach and include it.

    let layout = Layout::new::<T>();
    let size_rounded_up = round_up_to(layout.size(), layout.align())?;
    let total_size = len.checked_mul(size_rounded_up)?;

    Layout::from_size_align(total_size, layout.align()).ok()
}

/// Wrapper around `Layout::from_size_align` that adds debug assertions.
#[inline]
unsafe fn layout_from_size_align(size: usize, align: usize) -> Layout {
    if cfg!(debug_assertions) {
        Layout::from_size_align(size, align).unwrap()
    } else {
        Layout::from_size_align_unchecked(size, align)
    }
}

#[inline(never)]
fn allocation_size_overflow<T>() -> T {
    panic!("requested allocation size overflowed")
}

impl Bump {
    /// Construct a new arena to bump allocate into.
    ///
    /// ## Example
    ///
    /// ```
    /// let bump = bumpalo::Bump::new();
    /// # let _ = bump;
    /// ```
    pub fn new() -> Bump {
        Self::with_capacity(0)
    }

    /// Construct a new arena with the specified capacity to bump allocate into.
    ///
    /// ## Example
    ///
    /// ```
    /// let bump = bumpalo::Bump::with_capacity(100);
    /// # let _ = bump;
    /// ```
    pub fn with_capacity(capacity: usize) -> Bump {
        let chunk_footer = Self::new_chunk(
            None,
            Some(unsafe { layout_from_size_align(capacity, 1) }),
            None,
        );
        Bump {
            current_chunk_footer: Cell::new(chunk_footer),
        }
    }

    /// Allocate a new chunk and return its initialized footer.
    ///
    /// If given, `layouts` is a tuple of the current chunk size and the
    /// layout of the allocation request that triggered us to fall back to
    /// allocating a new chunk of memory.
    fn new_chunk(
        old_size_with_footer: Option<usize>,
        requested_layout: Option<Layout>,
        prev: Option<NonNull<ChunkFooter>>,
    ) -> NonNull<ChunkFooter> {
        unsafe {
            // As a sane default, we want our new allocation to be about twice as
            // big as the previous allocation
            let mut new_size_without_footer =
                if let Some(old_size_with_footer) = old_size_with_footer {
                    let old_size_without_footer = old_size_with_footer - FOOTER_SIZE;
                    old_size_without_footer
                        .checked_mul(2)
                        .unwrap_or_else(|| oom())
                } else {
                    DEFAULT_CHUNK_SIZE_WITHOUT_FOOTER
                };

            // We want to have CHUNK_ALIGN or better alignment
            let mut align = CHUNK_ALIGN;

            // If we already know we need to fulfill some request,
            // make sure we allocate at least enough to satisfy it
            if let Some(requested_layout) = requested_layout {
                align = align.max(requested_layout.align());
                let requested_size = round_up_to(requested_layout.size(), align)
                    .unwrap_or_else(allocation_size_overflow);
                new_size_without_footer = new_size_without_footer.max(requested_size);
            }

            // We want our allocations to play nice with the memory allocator,
            // and waste as little memory as possible.
            // For small allocations, this means that the entire allocation
            // including the chunk footer and mallocs internal overhead is
            // as close to a power of two as we can go without going over.
            // For larger allocations, we only need to get close to a page
            // boundary without going over.
            if new_size_without_footer < PAGE_STRATEGY_CUTOFF {
                new_size_without_footer =
                    (new_size_without_footer + OVERHEAD).next_power_of_two() - OVERHEAD;
            } else {
                new_size_without_footer = round_up_to(new_size_without_footer + OVERHEAD, 0x1000)
                    .unwrap_or_else(|| oom())
                    - OVERHEAD;
            }

            debug_assert_eq!(align % CHUNK_ALIGN, 0);
            debug_assert_eq!(new_size_without_footer % CHUNK_ALIGN, 0);
            let size = new_size_without_footer
                .checked_add(FOOTER_SIZE)
                .unwrap_or_else(allocation_size_overflow);
            let layout = layout_from_size_align(size, align);

            debug_assert!(size >= old_size_with_footer.unwrap_or(0) * 2);

            let data = alloc(layout);
            let data = NonNull::new(data).unwrap_or_else(|| oom());

            // The `ChunkFooter` is at the end of the chunk.
            let footer_ptr = data.as_ptr() as usize + new_size_without_footer;
            debug_assert_eq!((data.as_ptr() as usize) % align, 0);
            debug_assert_eq!(footer_ptr % CHUNK_ALIGN, 0);
            let footer_ptr = footer_ptr as *mut ChunkFooter;

            // The bump pointer is initialized to the end of the range we will
            // bump out of.
            let ptr = Cell::new(NonNull::new_unchecked(footer_ptr as *mut u8));

            ptr::write(
                footer_ptr,
                ChunkFooter {
                    data,
                    layout,
                    prev: Cell::new(prev),
                    ptr,
                },
            );

            NonNull::new_unchecked(footer_ptr)
        }
    }

    /// Reset this bump allocator.
    ///
    /// Performs mass deallocation on everything allocated in this arena by
    /// resetting the pointer into the underlying chunk of memory to the start
    /// of the chunk. Does not run any `Drop` implementations on deallocated
    /// objects; see [the `Bump` type's top-level
    /// documentation](./struct.Bump.html) for details.
    ///
    /// If this arena has allocated multiple chunks to bump allocate into, then
    /// the excess chunks are returned to the global allocator.
    ///
    /// ## Example
    ///
    /// ```
    /// let mut bump = bumpalo::Bump::new();
    ///
    /// // Allocate a bunch of things.
    /// {
    ///     for i in 0..100 {
    ///         bump.alloc(i);
    ///     }
    /// }
    ///
    /// // Reset the arena.
    /// bump.reset();
    ///
    /// // Allocate some new things in the space previously occupied by the
    /// // original things.
    /// for j in 200..400 {
    ///     bump.alloc(j);
    /// }
    ///```
    pub fn reset(&mut self) {
        // Takes `&mut self` so `self` must be unique and there can't be any
        // borrows active that would get invalidated by resetting.
        unsafe {
            let cur_chunk = self.current_chunk_footer.get();

            // Deallocate all chunks except the current one
            let prev_chunk = cur_chunk.as_ref().prev.replace(None);
            dealloc_chunk_list(prev_chunk);

            // Reset the bump finger to the end of the chunk.
            cur_chunk.as_ref().ptr.set(cur_chunk.cast());

            debug_assert!(
                self.current_chunk_footer
                    .get()
                    .as_ref()
                    .prev
                    .get()
                    .is_none(),
                "We should only have a single chunk"
            );
            debug_assert_eq!(
                self.current_chunk_footer.get().as_ref().ptr.get(),
                self.current_chunk_footer.get().cast(),
                "Our chunk's bump finger should be reset to the start of its allocation"
            );
        }
    }

    /// Allocate an object in this `Bump` and return an exclusive reference to
    /// it.
    ///
    /// ## Panics
    ///
    /// Panics if reserving space for `T` would cause an overflow.
    ///
    /// ## Example
    ///
    /// ```
    /// let bump = bumpalo::Bump::new();
    /// let x = bump.alloc("hello");
    /// assert_eq!(*x, "hello");
    /// ```
    #[inline(always)]
    #[allow(clippy::mut_from_ref)]
    pub fn alloc<T>(&self, val: T) -> &mut T {
        self.alloc_with(|| val)
    }

    /// Pre-allocate space for an object in this `Bump`, initializes it using
    /// the closure, then returns an exclusive reference to it.
    ///
    /// Calling `bump.alloc(x)` is essentially equivalent to calling
    /// `bump.alloc_with(|| x)`. However if you use `alloc_with`, then the
    /// closure will not be invoked until after allocating space for storing
    /// `x` on the heap.
    ///
    /// This can be useful in certain edge-cases related to compiler
    /// optimizations. When evaluating `bump.alloc(x)`, semantically `x` is
    /// first put on the stack and then moved onto the heap. In some cases,
    /// the compiler is able to optimize this into constructing `x` directly
    /// on the heap, however in many cases it does not.
    ///
    /// The function `alloc_with` tries to help the compiler be smarter. In
    /// most cases doing `bump.alloc_with(|| x)` on release mode will be
    /// enough to help the compiler to realize this optimization is valid
    /// and construct `x` directly onto the heap.
    ///
    /// ## Warning
    ///
    /// This function critically depends on compiler optimizations to achieve
    /// its desired effect. This means that it is not an effective tool when
    /// compiling without optimizations on.
    ///
    /// Even when optimizations are on, this function does not **guarantee**
    /// that the value is constructed on the heap. To the best of our
    /// knowledge no such guarantee can be made in stable Rust as of 1.33.
    ///
    /// ## Panics
    ///
    /// Panics if reserving space for `T` would cause an overflow.
    ///
    /// ## Example
    ///
    /// ```
    /// let bump = bumpalo::Bump::new();
    /// let x = bump.alloc_with(|| "hello");
    /// assert_eq!(*x, "hello");
    /// ```
    #[inline(always)]
    #[allow(clippy::mut_from_ref)]
    pub fn alloc_with<F, T>(&self, f: F) -> &mut T
    where
        F: FnOnce() -> T,
    {
        #[inline(always)]
        unsafe fn inner_writer<T, F>(ptr: *mut T, f: F)
        where
            F: FnOnce() -> T,
        {
            // This function is translated as:
            // - allocate space for a T on the stack
            // - call f() with the return value being put onto this stack space
            // - memcpy from the stack to the heap
            //
            // Ideally we want LLVM to always realize that doing a stack
            // allocation is unnecessary and optimize the code so it writes
            // directly into the heap instead. It seems we get it to realize
            // this most consistently if we put this critical line into it's
            // own function instead of inlining it into the surrounding code.
            ptr::write(ptr, f())
        }

        let layout = Layout::new::<T>();

        unsafe {
            let p = self.alloc_layout(layout);
            let p = p.as_ptr() as *mut T;
            inner_writer(p, f);
            &mut *p
        }
    }

    /// `Copy` a slice into this `Bump` and return an exclusive reference to
    /// the copy.
    ///
    /// ## Panics
    ///
    /// Panics if reserving space for the slice would cause an overflow.
    ///
    /// ## Example
    ///
    /// ```
    /// let bump = bumpalo::Bump::new();
    /// let x = bump.alloc_slice_copy(&[1, 2, 3]);
    /// assert_eq!(x, &[1, 2, 3]);
    /// ```
    #[inline(always)]
    #[allow(clippy::mut_from_ref)]
    pub fn alloc_slice_copy<T>(&self, src: &[T]) -> &mut [T]
    where
        T: Copy,
    {
        let layout = Layout::for_value(src);
        let dst = self.alloc_layout(layout).cast::<T>();

        unsafe {
            ptr::copy_nonoverlapping(src.as_ptr(), dst.as_ptr(), src.len());
            slice::from_raw_parts_mut(dst.as_ptr(), src.len())
        }
    }

    /// `Clone` a slice into this `Bump` and return an exclusive reference to
    /// the clone. Prefer `alloc_slice_copy` if `T` is `Copy`.
    ///
    /// ## Panics
    ///
    /// Panics if reserving space for the slice would cause an overflow.
    ///
    /// ## Example
    ///
    /// ```
    /// #[derive(Clone, Debug, Eq, PartialEq)]
    /// struct Sheep {
    ///     name: String,
    /// }
    ///
    /// let originals = vec![
    ///     Sheep { name: "Alice".into() },
    ///     Sheep { name: "Bob".into() },
    ///     Sheep { name: "Cathy".into() },
    /// ];
    ///
    /// let bump = bumpalo::Bump::new();
    /// let clones = bump.alloc_slice_clone(&originals);
    /// assert_eq!(originals, clones);
    /// ```
    #[inline(always)]
    #[allow(clippy::mut_from_ref)]
    pub fn alloc_slice_clone<T>(&self, src: &[T]) -> &mut [T]
    where
        T: Clone,
    {
        let layout = Layout::for_value(src);
        let dst = self.alloc_layout(layout).cast::<T>();

        unsafe {
            for (i, val) in src.iter().cloned().enumerate() {
                ptr::write(dst.as_ptr().add(i), val);
            }

            slice::from_raw_parts_mut(dst.as_ptr(), src.len())
        }
    }

    /// `Copy` a string slice into this `Bump` and return an exclusive reference to it.
    ///
    /// ## Panics
    ///
    /// Panics if reserving space for the string would cause an overflow.
    ///
    /// ## Example
    ///
    /// ```
    /// let bump = bumpalo::Bump::new();
    /// let hello = bump.alloc_str("hello world");
    /// assert_eq!("hello world", hello);
    /// ```
    #[inline(always)]
    #[allow(clippy::mut_from_ref)]
    pub fn alloc_str(&self, src: &str) -> &mut str {
        let buffer = self.alloc_slice_copy(src.as_bytes());
        unsafe {
            // This is OK, because it already came in as str, so it is guaranteed to be utf8
            str::from_utf8_unchecked_mut(buffer)
        }
    }

    /// Allocates a new slice of size `len` into this `Bump` and returns an
    /// exclusive reference to the copy.
    ///
    /// The elements of the slice are initialized using the supplied closure.
    /// The closure argument is the position in the slice.
    ///
    /// ## Panics
    ///
    /// Panics if reserving space for the slice would cause an overflow.
    ///
    /// ## Example
    ///
    /// ```
    /// let bump = bumpalo::Bump::new();
    /// let x = bump.alloc_slice_fill_with(5, |i| 5*(i+1));
    /// assert_eq!(x, &[5, 10, 15, 20, 25]);
    /// ```
    #[inline(always)]
    #[allow(clippy::mut_from_ref)]
    pub fn alloc_slice_fill_with<T, F>(&self, len: usize, mut f: F) -> &mut [T]
    where
        F: FnMut(usize) -> T,
    {
        let layout = layout_for_array::<T>(len).unwrap_or_else(|| oom());
        let dst = self.alloc_layout(layout).cast::<T>();

        unsafe {
            for i in 0..len {
                ptr::write(dst.as_ptr().add(i), f(i));
            }

            let result = slice::from_raw_parts_mut(dst.as_ptr(), len);
            debug_assert_eq!(Layout::for_value(result), layout);
            result
        }
    }

    /// Allocates a new slice of size `len` into this `Bump` and returns an
    /// exclusive reference to the copy.
    ///
    /// All elements of the slice are initialized to `value`.
    ///
    /// ## Panics
    ///
    /// Panics if reserving space for the slice would cause an overflow.
    ///
    /// ## Example
    ///
    /// ```
    /// let bump = bumpalo::Bump::new();
    /// let x = bump.alloc_slice_fill_copy(5, 42);
    /// assert_eq!(x, &[42, 42, 42, 42, 42]);
    /// ```
    #[inline(always)]
    #[allow(clippy::mut_from_ref)]
    pub fn alloc_slice_fill_copy<T: Copy>(&self, len: usize, value: T) -> &mut [T] {
        self.alloc_slice_fill_with(len, |_| value)
    }

    /// Allocates a new slice of size `len` slice into this `Bump` and return an
    /// exclusive reference to the copy.
    ///
    /// All elements of the slice are initialized to `value.clone()`.
    ///
    /// ## Panics
    ///
    /// Panics if reserving space for the slice would cause an overflow.
    ///
    /// ## Example
    ///
    /// ```
    /// let bump = bumpalo::Bump::new();
    /// let s: String = "Hello Bump!".to_string();
    /// let x: &[String] = bump.alloc_slice_fill_clone(2, &s);
    /// assert_eq!(x.len(), 2);
    /// assert_eq!(&x[0], &s);
    /// assert_eq!(&x[1], &s);
    /// ```
    #[inline(always)]
    #[allow(clippy::mut_from_ref)]
    pub fn alloc_slice_fill_clone<T: Clone>(&self, len: usize, value: &T) -> &mut [T] {
        self.alloc_slice_fill_with(len, |_| value.clone())
    }

    /// Allocates a new slice of size `len` slice into this `Bump` and return an
    /// exclusive reference to the copy.
    ///
    /// The elements are initialized using the supplied iterator.
    ///
    /// ## Panics
    ///
    /// Panics if reserving space for the slice would cause an overflow, or if the supplied
    /// iterator returns fewer elements than it promised.
    ///
    /// ## Example
    ///
    /// ```
    /// let bump = bumpalo::Bump::new();
    /// let x: &[i32] = bump.alloc_slice_fill_iter([2, 3, 5].iter().cloned().map(|i| i * i));
    /// assert_eq!(x, [4, 9, 25]);
    /// ```
    #[inline(always)]
    #[allow(clippy::mut_from_ref)]
    pub fn alloc_slice_fill_iter<T, I>(&self, iter: I) -> &mut [T]
    where
        I: IntoIterator<Item = T>,
        I::IntoIter: ExactSizeIterator,
    {
        let mut iter = iter.into_iter();
        self.alloc_slice_fill_with(iter.len(), |_| {
            iter.next().expect("Iterator supplied too few elements")
        })
    }

    /// Allocates a new slice of size `len` slice into this `Bump` and return an
    /// exclusive reference to the copy.
    ///
    /// All elements of the slice are initialized to `T::default()`.
    ///
    /// ## Panics
    ///
    /// Panics if reserving space for the slice would cause an overflow.
    ///
    /// ## Example
    ///
    /// ```
    /// let bump = bumpalo::Bump::new();
    /// let x = bump.alloc_slice_fill_default::<u32>(5);
    /// assert_eq!(x, &[0, 0, 0, 0, 0]);
    /// ```
    #[inline(always)]
    #[allow(clippy::mut_from_ref)]
    pub fn alloc_slice_fill_default<T: Default>(&self, len: usize) -> &mut [T] {
        self.alloc_slice_fill_with(len, |_| T::default())
    }

    /// Allocate space for an object with the given `Layout`.
    ///
    /// The returned pointer points at uninitialized memory, and should be
    /// initialized with
    /// [`std::ptr::write`](https://doc.rust-lang.org/stable/std/ptr/fn.write.html).
    #[inline(always)]
    pub fn alloc_layout(&self, layout: Layout) -> NonNull<u8> {
        if let Some(p) = self.try_alloc_layout_fast(layout) {
            p
        } else {
            self.alloc_layout_slow(layout)
        }
    }

    #[inline(always)]
    fn try_alloc_layout_fast(&self, layout: Layout) -> Option<NonNull<u8>> {
        unsafe {
            if layout.size() == 0 {
                // We want to use NonNull::dangling here, but that function uses mem::align_of::<T>
                // internally. For our use-case we cannot call dangling::<T>, since we are not generic
                // over T; we only have access to the Layout of T. Instead we re-implement the
                // functionality here.
                //
                // See https://github.com/rust-lang/rust/blob/9966af3/src/libcore/ptr/non_null.rs#L70
                // for the reference implementation.
                let ptr = layout.align() as *mut u8;
                return Some(NonNull::new_unchecked(ptr));
            }

            let footer = self.current_chunk_footer.get();
            let footer = footer.as_ref();
            let ptr = footer.ptr.get().as_ptr() as usize;
            let start = footer.data.as_ptr() as usize;
            debug_assert!(start <= ptr);
            debug_assert!(ptr <= footer as *const _ as usize);

            let ptr = ptr.checked_sub(layout.size())?;
            let aligned_ptr = ptr & !(layout.align() - 1);

            if aligned_ptr >= start {
                let aligned_ptr = NonNull::new_unchecked(aligned_ptr as *mut u8);
                footer.ptr.set(aligned_ptr);
                Some(aligned_ptr)
            } else {
                None
            }
        }
    }

    // Slow path allocation for when we need to allocate a new chunk from the
    // parent bump set because there isn't enough room in our current chunk.
    #[inline(never)]
    fn alloc_layout_slow(&self, layout: Layout) -> NonNull<u8> {
        unsafe {
            let size = layout.size();

            // Get a new chunk from the global allocator.
            let current_footer = self.current_chunk_footer.get();
            let current_layout = current_footer.as_ref().layout;
            let new_footer = Bump::new_chunk(
                Some(current_layout.size()),
                Some(layout),
                Some(current_footer),
            );
            debug_assert_eq!(
                new_footer.as_ref().data.as_ptr() as usize % layout.align(),
                0
            );

            // Set the new chunk as our new current chunk.
            self.current_chunk_footer.set(new_footer);

            let new_footer = new_footer.as_ref();

            // Move the bump ptr finger down to allocate room for `val`. We know
            // this can't overflow because we successfully allocated a chunk of
            // at least the requested size.
            let ptr = new_footer.ptr.get().as_ptr() as usize - size;
            // Round the pointer down to the requested alignment.
            let ptr = ptr & !(layout.align() - 1);
            debug_assert!(
                ptr <= new_footer as *const _ as usize,
                "{:#x} <= {:#x}",
                ptr,
                new_footer as *const _ as usize
            );
            let ptr = NonNull::new_unchecked(ptr as *mut u8);
            new_footer.ptr.set(ptr);

            // Return a pointer to the freshly allocated region in this chunk.
            ptr
        }
    }

    /// Returns an iterator over each chunk of allocated memory that
    /// this arena has bump allocated into.
    ///
    /// The chunks are returned ordered by allocation time, with the most
    /// recently allocated chunk being returned first, and the least recently
    /// allocated chunk being returned last.
    ///
    /// The values inside each chunk are also ordered by allocation time, with
    /// the most recent allocation being earlier in the slice, and the least
    /// recent allocation being towards the end of the slice.
    ///
    /// ## Safety
    ///
    /// Because this method takes `&mut self`, we know that the bump arena
    /// reference is unique and therefore there aren't any active references to
    /// any of the objects we've allocated in it either. This potential aliasing
    /// of exclusive references is one common footgun for unsafe code that we
    /// don't need to worry about here.
    ///
    /// However, there could be regions of uninitialized memory used as padding
    /// between allocations, which is why this iterator has items of type
    /// `[MaybeUninit<u8>]`, instead of simply `[u8]`.
    ///
    /// The only way to guarantee that there is no padding between allocations
    /// or within allocated objects is if all of these properties hold:
    ///
    /// 1. Every object allocated in this arena has the same alignment,
    ///    and that alignment is at most 16.
    /// 2. Every object's size is a multiple of its alignment.
    /// 3. None of the objects allocated in this arena contain any internal
    ///    padding.
    ///
    /// If you want to use this `iter_allocated_chunks` method, it is *your*
    /// responsibility to ensure that these properties hold before calling
    /// `MaybeUninit::assume_init` or otherwise reading the returned values.
    ///
    /// ## Example
    ///
    /// ```
    /// let mut bump = bumpalo::Bump::new();
    ///
    /// // Allocate a bunch of `i32`s in this bump arena, potentially causing
    /// // additional memory chunks to be reserved.
    /// for i in 0..10000 {
    ///     bump.alloc(i);
    /// }
    ///
    /// // Iterate over each chunk we've bump allocated into. This is safe
    /// // because we have only allocated `i32`s in this arena, which fulfills
    /// // the above requirements.
    /// for ch in bump.iter_allocated_chunks() {
    ///     println!("Used a chunk that is {} bytes long", ch.len());
    ///     println!("The first byte is {:?}", unsafe {
    ///         ch.get(0).unwrap().assume_init()
    ///     });
    /// }
    ///
    /// // Within a chunk, allocations are ordered from most recent to least
    /// // recent. If we allocated 'a', then 'b', then 'c', when we iterate
    /// // through the chunk's data, we get them in the order 'c', then 'b',
    /// // then 'a'.
    ///
    /// bump.reset();
    /// bump.alloc(b'a');
    /// bump.alloc(b'b');
    /// bump.alloc(b'c');
    ///
    /// assert_eq!(bump.iter_allocated_chunks().count(), 1);
    /// let chunk = bump.iter_allocated_chunks().nth(0).unwrap();
    /// assert_eq!(chunk.len(), 3);
    ///
    /// // Safe because we've only allocated `u8`s in this arena, which
    /// // fulfills the above requirements.
    /// unsafe {
    ///     assert_eq!(chunk[0].assume_init(), b'c');
    ///     assert_eq!(chunk[1].assume_init(), b'b');
    ///     assert_eq!(chunk[2].assume_init(), b'a');
    /// }
    /// ```
    pub fn iter_allocated_chunks(&mut self) -> ChunkIter<'_> {
        ChunkIter {
            footer: Some(self.current_chunk_footer.get()),
            bump: PhantomData,
        }
    }

    /// Calculates the number of bytes currently allocated across all chunks.
    ///
    /// If you allocate types of different alignments or types with
    /// larger-than-typical alignment in the same arena, some padding
    /// bytes might get allocated in the bump arena. Note that those padding
    /// bytes will add to this method's resulting sum, so you cannot rely
    /// on it only counting the sum of the sizes of the things
    /// you've allocated in the arena.
    ///
    /// ## Example
    ///
    /// ```
    /// let bump = bumpalo::Bump::new();
    /// let _x = bump.alloc_slice_fill_default::<u32>(5);
    /// let bytes = bump.allocated_bytes();
    /// assert!(bytes >= core::mem::size_of::<u32>() * 5);
    /// ```
    pub fn allocated_bytes(&self) -> usize {
        let mut footer = Some(self.current_chunk_footer.get());

        let mut bytes = 0;

        while let Some(f) = footer {
            let foot = unsafe { f.as_ref() };

            let ptr = foot.ptr.get().as_ptr() as usize;
            debug_assert!(ptr <= foot as *const _ as usize);

            bytes += foot as *const _ as usize - ptr;

            footer = foot.prev.get();
        }

        bytes
    }

    #[inline]
    unsafe fn is_last_allocation(&self, ptr: NonNull<u8>) -> bool {
        let footer = self.current_chunk_footer.get();
        let footer = footer.as_ref();
        footer.ptr.get() == ptr
    }
}

/// An iterator over each chunk of allocated memory that
/// an arena has bump allocated into.
///
/// The chunks are returned ordered by allocation time, with the most recently
/// allocated chunk being returned first.
///
/// The values inside each chunk is also ordered by allocation time, with the most
/// recent allocation being earlier in the slice.
///
/// This struct is created by the [`iter_allocated_chunks`] method on
/// [`Bump`]. See that function for a safety description regarding reading from the returned items.
///
/// [`Bump`]: ./struct.Bump.html
/// [`iter_allocated_chunks`]: ./struct.Bump.html#method.iter_allocated_chunks
#[derive(Debug)]
pub struct ChunkIter<'a> {
    footer: Option<NonNull<ChunkFooter>>,
    bump: PhantomData<&'a mut Bump>,
}

impl<'a> Iterator for ChunkIter<'a> {
    type Item = &'a [mem::MaybeUninit<u8>];
    fn next(&mut self) -> Option<&'a [mem::MaybeUninit<u8>]> {
        unsafe {
            let foot = self.footer?;
            let foot = foot.as_ref();
            let data = foot.data.as_ptr() as usize;
            let ptr = foot.ptr.get().as_ptr() as usize;
            debug_assert!(data <= ptr);
            debug_assert!(ptr <= foot as *const _ as usize);

            let len = foot as *const _ as usize - ptr;
            let slice = slice::from_raw_parts(ptr as *const mem::MaybeUninit<u8>, len);
            self.footer = foot.prev.get();
            Some(slice)
        }
    }
}

impl<'a> iter::FusedIterator for ChunkIter<'a> {}

#[inline(never)]
#[cold]
fn oom() -> ! {
    panic!("out of memory")
}

unsafe impl<'a> alloc::Alloc for &'a Bump {
    #[inline(always)]
    unsafe fn alloc(&mut self, layout: Layout) -> Result<NonNull<u8>, alloc::AllocErr> {
        Ok(self.alloc_layout(layout))
    }

    #[inline]
    unsafe fn dealloc(&mut self, ptr: NonNull<u8>, layout: Layout) {
        // If the pointer is the last allocation we made, we can reuse the bytes,
        // otherwise they are simply leaked -- at least until somebody calls reset().
        if layout.size() != 0 && self.is_last_allocation(ptr) {
            let ptr = NonNull::new_unchecked(ptr.as_ptr().add(layout.size()));
            self.current_chunk_footer.get().as_ref().ptr.set(ptr);
        }
    }

    #[inline]
    unsafe fn realloc(
        &mut self,
        ptr: NonNull<u8>,
        layout: Layout,
        new_size: usize,
    ) -> Result<NonNull<u8>, alloc::AllocErr> {
        let old_size = layout.size();

        if old_size == 0 {
            return self.alloc(layout);
        }

        if new_size <= old_size {
            if self.is_last_allocation(ptr)
                // Only reclaim the excess space (which requires a copy) if it
                // is worth it: we are actually going to recover "enough" space
                // and we can do a non-overlapping copy.
                && new_size <= old_size / 2
            {
                let delta = old_size - new_size;
                let footer = self.current_chunk_footer.get();
                let footer = footer.as_ref();
                footer
                    .ptr
                    .set(NonNull::new_unchecked(footer.ptr.get().as_ptr().add(delta)));
                let new_ptr = footer.ptr.get();
                // NB: we know it is non-overlapping because of the size check
                // in the `if` condition.
                ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_ptr(), new_size);
                return Ok(new_ptr);
            } else {
                return Ok(ptr);
            }
        }

        if self.is_last_allocation(ptr) {
            // Try to allocate the delta size within this same block so we can
            // reuse the currently allocated space.
            let delta = new_size - old_size;
            if let Some(p) =
                self.try_alloc_layout_fast(layout_from_size_align(delta, layout.align()))
            {
                ptr::copy(ptr.as_ptr(), p.as_ptr(), new_size);
                return Ok(p);
            }
        }

        // Fallback: do a fresh allocation and copy the existing data into it.
        let new_layout = layout_from_size_align(new_size, layout.align());
        let new_ptr = self.alloc_layout(new_layout);
        ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_ptr(), old_size);
        Ok(new_ptr)
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn chunk_footer_is_five_words() {
        assert_eq!(mem::size_of::<ChunkFooter>(), mem::size_of::<usize>() * 5);
    }

    #[test]
    #[allow(clippy::cognitive_complexity)]
    fn test_realloc() {
        use crate::alloc::Alloc;

        unsafe {
            const CAPACITY: usize = 1024 - OVERHEAD;
            let mut b = Bump::with_capacity(CAPACITY);

            // `realloc` doesn't shrink allocations that aren't "worth it".
            let layout = Layout::from_size_align(100, 1).unwrap();
            let p = b.alloc_layout(layout);
            let q = (&b).realloc(p, layout, 51).unwrap();
            assert_eq!(p, q);
            b.reset();

            // `realloc` will shrink allocations that are "worth it".
            let layout = Layout::from_size_align(100, 1).unwrap();
            let p = b.alloc_layout(layout);
            let q = (&b).realloc(p, layout, 50).unwrap();
            assert!(p != q);
            b.reset();

            // `realloc` will reuse the last allocation when growing.
            let layout = Layout::from_size_align(10, 1).unwrap();
            let p = b.alloc_layout(layout);
            let q = (&b).realloc(p, layout, 11).unwrap();
            assert_eq!(q.as_ptr() as usize, p.as_ptr() as usize - 1);
            b.reset();

            // `realloc` will allocate a new chunk when growing the last
            // allocation, if need be.
            let layout = Layout::from_size_align(1, 1).unwrap();
            let p = b.alloc_layout(layout);
            let q = (&b).realloc(p, layout, CAPACITY + 1).unwrap();
            assert!(q.as_ptr() as usize != p.as_ptr() as usize - CAPACITY);
            b = Bump::with_capacity(CAPACITY);

            // `realloc` will allocate and copy when reallocating anything that
            // wasn't the last allocation.
            let layout = Layout::from_size_align(1, 1).unwrap();
            let p = b.alloc_layout(layout);
            let _ = b.alloc_layout(layout);
            let q = (&b).realloc(p, layout, 2).unwrap();
            assert!(q.as_ptr() as usize != p.as_ptr() as usize - 1);
            b.reset();
        }
    }
}