1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
//! Fast and easy bitfield proc macro
//!
//! Provides a proc macro for compressing a data structure with data which can be expressed with bit
//! lengths that are not a power of Two.
//!
//! # Derive Bitfields
//! - Implements the [`Bitfields`](https://docs.rs/bondrewd/latest/bondrewd/trait.Bitfields.html) trait
//! which offers from\into bytes functions that are non-failable and convert the struct from/into sized
//! u8 arrays ([u8; {total_bit_length * 8}]).
//! - `read` and `write` functions that allow the field to be accessed or overwritten within a sized u8 array.
//! - More information about how each field is handled (bit length, endianness, ..), as well as structure
//! wide effects (bit position, default field endianness, ..), can be found on the
//! [`Bitfields Derive`](Bitfields) page.
//!
//! For example we can define a data structure with 7 total bytes as:
//! - A boolean field named one will be the first bit.
//! - A floating point field named two will be the next 32 bits. floats must be full sized
//! currently.
//! - A signed integer field named three will be the next 14 bits.
//! - An unsigned integer field named four will be the next 6 bits.
//!
//! ```
//! // Users code
//! use bondrewd::*;
//! #[derive(Bitfields)]
//! #[bondrewd(default_endianness = "be")]
//! struct SimpleExample {
//!     // fields that are as expected do not require attributes.
//!     one: bool,
//!     two: f32,
//!     #[bondrewd(bit_length = 14)]
//!     three: i16,
//!     #[bondrewd(bit_length = 6)]
//!     four: u8,
//! }
//! ```
//! Generated Code with function logic omitted. [Full Generated Code](#full-example-generated-code)
//! ```compile_fail
//! impl Bitfields<7usize> for SimpleExample {
//!     const BIT_SIZE: usize = 53usize;
//!     fn into_bytes(self) -> [u8; 7usize] { .. }
//!     fn from_bytes(mut input_byte_buffer: [u8; 7usize]) -> Self { .. }
//! }
//! impl SimpleExample {
//!     pub fn read_one(input_byte_buffer: &[u8; 7usize]) -> bool { .. }
//!     pub fn read_two(input_byte_buffer: &[u8; 7usize]) -> f32 { .. }
//!     pub fn read_three(input_byte_buffer: &[u8; 7usize]) -> i16 { .. }
//!     pub fn read_four(input_byte_buffer: &[u8; 7usize]) -> u8 { .. }
//!     pub fn write_one(output_byte_buffer: &mut [u8; 7usize], mut one: bool) { .. }
//!     pub fn write_two(output_byte_buffer: &mut [u8; 7usize], mut two: f32) { .. }
//!     pub fn write_three(output_byte_buffer: &mut [u8; 7usize], mut three: i16) { .. }
//!     pub fn write_four(output_byte_buffer: &mut [u8; 7usize], mut four: u8) { .. }
//! }
//! ```
//! # Derive BitfieldEnum
//! - Implements the [`BitfieldEnum`](https://docs.rs/bondrewd/latest/bondrewd/trait.BitfieldEnum.html)
//! trait which offers from\into primitive functions that are non-failable and convert the enum from/into
//! a primitive type (u8 is the only currently testing primitive).
//! - More information about controlling the end result (define variant values, define a catch/invalid
//! variant) can be found on the [`BitfieldEnum Derive`](BitfieldEnum) page.
//!
//! ```
//! // Users code
//! use bondrewd::BitfieldEnum;
//! #[derive(BitfieldEnum)]
//! enum SimpleEnum {
//!     Zero,
//!     One,
//!     Six = 6,
//!     Two,
//! }
//! ```
//! Full Generated Struct Code
//! ```
//! # use bondrewd::BitfieldEnum;
//! # enum SimpleEnum {
//! #     Zero,
//! #     One,
//! #     Six = 6,
//! #     Two,
//! # }
//! // use statement and SimpleEnum definition are hidden.
//! impl bondrewd::BitfieldEnum for SimpleEnum {
//!     type Primitive = u8;
//!     fn into_primitive(self) -> u8 {
//!         match self {
//!             Self::Zero => 0,
//!             Self::One => 1,
//!             Self::Six => 6,
//!             Self::Two => 2,
//!         }
//!     }
//!     fn from_primitive(input: u8) -> Self {
//!         match input {
//!             0 => Self::Zero,
//!             1 => Self::One,
//!             6 => Self::Six,
//!             _ => Self::Two,
//!         }
//!     }
//! }
//! ```
//!
//! # Crate Features
//! Slice functions are convenience functions for reading/wring single or multiple fields without reading
//! the entire structure. Bondrewd will provided 2 ways to access the field:
//! * Single field access. These are functions that are added along side the standard read/write field
//! functions in the impl for the input structure. read/write slice functions will check the length of
//! the slice to insure the amount to bytes needed for the field (NOT the entire structure) are present and
//! return BitfieldSliceError if not enough bytes are present.
//!     * `fn read_slice_{field}(&[u8]) -> Result<{field_type}, bondrewd::BondrewdSliceError> { .. }`
//!     * `fn write_slice_{field}(&mut [u8], {field_type}) -> Result<(), bondrewd::BondrewdSliceError> { .. }`
//! * Multiple field access.
//!     * `fn check_slice(&[u8]) -> Result<{struct_name}Checked, bondrewd::BondrewdSliceError> { .. }`
//!       This function will check the size of the slice, if the slice is big enough it will return
//!       a checked structure. the structure will be the same name as the input structure with
//!       "Checked" tacked onto the end. the Checked Structure will have getters for each of the input
//!       structures fields, the naming is the same as the standard `read_{field}` functions.
//!         * `fn read_{field}(&self) -> {field_type} { .. }`
//!     * `fn check_slice_mut(&mut [u8]) -> Result<{struct_name}CheckedMut, bondrewd::BondrewdSliceError> { .. }`
//!       This function will check the size of the slice, if the slice is big enough it will return
//!       a checked structure. the structure will be the same name as the input structure with
//!       "CheckedMut" tacked onto the end. the Checked Structure will have getters and setters for each
//!       of the input structures fields, the naming is the same as the standard `read_{field}` and
//!       `write_{field}` functions.
//!         * `fn read_{field}(&self) -> {field_type} { .. }`
//!         * `fn write_{field}(&mut self) -> {field_type} { .. }`
//!   
//! Example Cargo.toml Bondrewd dependency  
//! `bondrewd = { version = "^0.1", features = ["derive", "slice_fns"] }`  
//! Example Generated Slice Api:
//! ```compile_fail
//! impl Simple {
//!     pub fn check_slice(buffer: &[u8]) -> Result<SimpleChecked, BitfieldSliceError> { .. }
//!     pub fn check_slice_mut(buffer: &mut [u8]) -> Result<SimpleCheckedMut, BitfieldSliceError> { .. }
//!     #[inline]
//!     pub fn read_slice_one(input_byte_buffer: &[u8]) -> Result<u8, BitfieldSliceError> { .. }
//!     #[inline]
//!     pub fn read_slice_two(input_byte_buffer: &[u8]) -> Result<bool, BitfieldSliceError> { .. }
//!     #[inline]
//!     pub fn read_slice_three(input_byte_buffer: &[u8]) -> Result<u8, BitfieldSliceError> { .. }
//!     #[inline]
//!     pub fn write_slice_one(output_byte_buffer: &mut [u8],one: u8) -> Result<(), BitfieldSliceError> { .. }
//!     #[inline]
//!     pub fn write_slice_two(output_byte_buffer: &mut [u8],two: bool) -> Result<(), BitfieldSliceError> { .. }
//!     #[inline]
//!     pub fn write_slice_three(output_byte_buffer: &mut [u8],three: u8) -> Result<(), BitfieldSliceError> { .. }
//! }
//! struct SimpleChecked<'a> {
//!     buffer: &'a [u8],
//! }
//! impl<'a> SimpleChecked<'a> {
//!     #[inline]
//!     pub fn read_one(&self) -> u8 { .. }
//!     #[inline]
//!     pub fn read_two(&self) -> bool { .. }
//!     #[inline]
//!     pub fn read_three(&self) -> u8 { .. }
//! }
//! struct SimpleCheckedMut<'a> {
//!     buffer: &'a mut [u8],
//! }
//! impl<'a> SimpleCheckedMut<'a> {
//!     #[inline]
//!     pub fn read_one(&self) -> u8 { .. }
//!     #[inline]
//!     pub fn read_two(&self) -> bool { .. }
//!     #[inline]
//!     pub fn read_three(&self) -> u8 { .. }
//!     #[inline]
//!     pub fn write_one(&mut self, one: u8) { .. }
//!     #[inline]
//!     pub fn write_two(&mut self, two: bool) { .. }
//!     #[inline]
//!     pub fn write_three(&mut self, three: u8) { .. }
//! }
//! ```
//! 
//! `hex_fns` provided from/into hex functions like from/into bytes. The hex inputs/outputs are \[u8;N\]
//! where N is double the calculated bondrewd STRUCT_SIZE. Hex encoding and decoding is based off the
//! [hex](https://crates.io/crates/hex) crate's from/into slice functions but with statically sized
//! arrays so we could eliminate sizing errors.
//!
//! ### Full Example Generated Code
//! ```
//! use bondrewd::*;
//! struct SimpleExample {
//!     one: bool,
//!     two: f32,
//!     three: i16,
//!     four: u8,
//! }
//! impl Bitfields<7usize> for SimpleExample {
//!     const BIT_SIZE: usize = 53usize;
//!     fn into_bytes(self) -> [u8; 7usize] {
//!         let mut output_byte_buffer: [u8; 7usize] = [0u8; 7usize];
//!         let one = self.one;
//!         output_byte_buffer[0usize] |= ((one as u8) << 7usize) & 128u8;
//!         let two = self.two;
//!         let two_bytes = (two.to_bits().rotate_right(1u32)).to_be_bytes();
//!         output_byte_buffer[0usize] |= two_bytes[0usize] & 127u8;
//!         output_byte_buffer[1usize] |= two_bytes[1usize];
//!         output_byte_buffer[2usize] |= two_bytes[2usize];
//!         output_byte_buffer[3usize] |= two_bytes[3usize];
//!         output_byte_buffer[4usize] |= two_bytes[0] & 128u8;
//!         let three = self.three;
//!         let three_bytes = (three.rotate_right(7u32)).to_be_bytes();
//!         output_byte_buffer[4usize] |= three_bytes[1usize] & 127u8;
//!         output_byte_buffer[5usize] |= three_bytes[0] & 254u8;
//!         let four = self.four;
//!         let four_bytes = (four.rotate_right(5u32)).to_be_bytes();
//!         output_byte_buffer[5usize] |= four_bytes[0usize] & 1u8;
//!         output_byte_buffer[6usize] |= four_bytes[0] & 248u8;
//!         output_byte_buffer
//!     }
//!     fn from_bytes(mut input_byte_buffer: [u8; 7usize]) -> Self {
//!         let one = Self::read_one(&input_byte_buffer);
//!         let two = Self::read_two(&input_byte_buffer);
//!         let three = Self::read_three(&input_byte_buffer);
//!         let four = Self::read_four(&input_byte_buffer);
//!         Self {
//!             one,
//!             two,
//!             three,
//!             four,
//!         }
//!     }
//! }
//! impl SimpleExample {
//!     #[inline]
//!     pub fn read_one(input_byte_buffer: &[u8; 7usize]) -> bool {
//!         ((input_byte_buffer[0usize] & 128u8) != 0)
//!     }
//!     #[inline]
//!     pub fn read_two(input_byte_buffer: &[u8; 7usize]) -> f32 {
//!         f32::from_bits(
//!             u32::from_be_bytes({
//!                 let mut two_bytes: [u8; 4usize] = [0u8; 4usize];
//!                 two_bytes[0usize] |= input_byte_buffer[0usize] & 127u8;
//!                 two_bytes[1usize] |= input_byte_buffer[1usize];
//!                 two_bytes[2usize] |= input_byte_buffer[2usize];
//!                 two_bytes[3usize] |= input_byte_buffer[3usize];
//!                 two_bytes[0] |= input_byte_buffer[4usize] & 128u8;
//!                 two_bytes
//!             })
//!             .rotate_left(1u32),
//!         )
//!     }
//!     #[inline]
//!     pub fn read_three(input_byte_buffer: &[u8; 7usize]) -> i16 {
//!         i16::from_be_bytes({
//!             let mut three_bytes: [u8; 2usize] = if (input_byte_buffer[4usize] & 64u8) == 64u8 {
//!                 [1u8, 128u8]
//!             } else {
//!                 [0u8; 2usize]
//!             };
//!             three_bytes[1usize] |= input_byte_buffer[4usize] & 127u8;
//!             three_bytes[0] |= input_byte_buffer[5usize] & 254u8;
//!             three_bytes
//!         })
//!         .rotate_left(7u32)
//!     }
//!     #[inline]
//!     pub fn read_four(input_byte_buffer: &[u8; 7usize]) -> u8 {
//!         u8::from_be_bytes({
//!             let mut four_bytes: [u8; 1usize] = [0u8; 1usize];
//!             four_bytes[0usize] |= input_byte_buffer[5usize] & 1u8;
//!             four_bytes[0] |= input_byte_buffer[6usize] & 248u8;
//!             four_bytes
//!         })
//!         .rotate_left(5u32)
//!     }
//!     #[inline]
//!     pub fn write_one(output_byte_buffer: &mut [u8; 7usize], mut one: bool) {
//!         output_byte_buffer[0usize] &= 127u8;
//!         output_byte_buffer[0usize] |= ((one as u8) << 7usize) & 128u8;
//!     }
//!     #[inline]
//!     pub fn write_two(output_byte_buffer: &mut [u8; 7usize], mut two: f32) {
//!         output_byte_buffer[0usize] &= 128u8;
//!         output_byte_buffer[1usize] = 0u8;
//!         output_byte_buffer[2usize] = 0u8;
//!         output_byte_buffer[3usize] = 0u8;
//!         output_byte_buffer[4usize] &= 127u8;
//!         let two_bytes = (two.to_bits().rotate_right(1u32)).to_be_bytes();
//!         output_byte_buffer[0usize] |= two_bytes[0usize] & 127u8;
//!         output_byte_buffer[1usize] |= two_bytes[1usize];
//!         output_byte_buffer[2usize] |= two_bytes[2usize];
//!         output_byte_buffer[3usize] |= two_bytes[3usize];
//!         output_byte_buffer[4usize] |= two_bytes[0] & 128u8;
//!     }
//!     #[inline]
//!     pub fn write_three(output_byte_buffer: &mut [u8; 7usize], mut three: i16) {
//!         output_byte_buffer[4usize] &= 128u8;
//!         output_byte_buffer[5usize] &= 1u8;
//!         let three_bytes = (three.rotate_right(7u32)).to_be_bytes();
//!         output_byte_buffer[4usize] |= three_bytes[1usize] & 127u8;
//!         output_byte_buffer[5usize] |= three_bytes[0] & 254u8;
//!     }
//!     #[inline]
//!     pub fn write_four(output_byte_buffer: &mut [u8; 7usize], mut four: u8) {
//!         output_byte_buffer[5usize] &= 254u8;
//!         output_byte_buffer[6usize] &= 7u8;
//!         let four_bytes = (four.rotate_right(5u32)).to_be_bytes();
//!         output_byte_buffer[5usize] |= four_bytes[0usize] & 1u8;
//!         output_byte_buffer[6usize] |= four_bytes[0] & 248u8;
//!     }
//! }
//! ```
extern crate proc_macro;
mod enums;
use enums::parse::EnumInfo;
mod structs;
use structs::common::StructInfo;
use structs::from_bytes::create_from_bytes_field_quotes;
use structs::into_bytes::create_into_bytes_field_quotes;

use proc_macro::TokenStream;
use quote::{format_ident, quote};
use syn::{parse_macro_input, DeriveInput};

/// Generates an implementation of the bondrewd::Bitfield trait, as well as peek and set functions for direct
/// sized u8 arrays access. This crate is designed so that attributes are only required for fields that
/// are not what you would expect without the attribute. For example if you provide a u8 fields with no 
/// attributes, the field would be assumed to be the next 8 bits after the field before it. If a field 
/// of bool type without attributes is defined, the field would be assumed to be the next bit after
/// the field before it.
///
/// # Supported Field Types
/// - All primitives other than usize and isize (i believe ambiguous sizing is bad for this type of work).
///     - Floats currently must be full sized.
///     - Its important to know that there is a small runtime cost for signed numbers.
/// - Enums which implement the BitfieldEnum trait in Bondrewd.
/// - Structs which implement the Bitfield trait in Bondrewd.
///
/// # Struct Attributes
/// - `default_endianness = {"le" or "be"}` Describes a default endianness for primitive fields. 
/// [example](#endianness-examples)
/// - `read_from = {"msb0" or "lsb0"}` Defines bit positioning. which end of the byte array to start at.
/// [example](#bit-positioning-examples)
/// - `enforce_bytes = {BYTES}` Adds a check that requires total bytes defined by fields to equal provided
/// BYTES. [example](#enforce-bits-examples)
/// - `enforce_bits = {BITS}` Adds a check that requires total bits defined by fields to equal provided
/// BITS. [example](#enforce-bits-examples)
/// - `enforce_full_bytes` Adds a check that requires total bits defined by fields to equal a multiple of 8.
/// [example](#enforce-full-bytes-example)
/// - `fill_bytes = {BYTES}` Will force the output/input byte array size to be the provided SIZE amount of
/// bytes. [example](#fill-bytes-examples)
/// - `reverse` Defines that the entire byte array should be read backward (first byte index becomes last
/// byte index). This has no runtime cost. [example](#reverse-example)
///
/// # Field Attributes
/// - `bit_length = {BITS}` Define the total amount of bits to use when condensed. [example](#simple-example)
/// - `byte_length = {BYTES}` Define the total amount of bytes to use when condensed. [example](#simple-example)
/// - `endianness = {"le" or "be"}` Define per field endianess. [example](#endianness-examples)
/// - `block_bit_length = {BITS}` Describes a bit length for the entire array dropping lower indexes first.
/// [example](#bitfield-array-examples)
/// - `block_byte_length = {BYTES}` Describes a byte length for the entire array dropping lower indexes
/// first. [example](#bitfield-array-examples)
/// - `element_bit_length = {BITS}` Describes a bit length for each element of an array. (default array
/// type). [example](#bitfield-array-examples)
/// - `element_byte_length = {BYTES}` Describes a byte length for each element of an array. (default array
/// type). [example](#bitfield-array-examples)
/// - `enum_primitive = "u8"` Defines the size of the enum. the BitfieldEnum currently only supports u8.
/// [example](#enum-examples)
/// - `struct_size = {SIZE}` Defines the field as a struct which implements the Bitfield trait and the
/// BYTE_SIZE const defined in said trait. [example](#bitfield-struct-as-field-examples)
/// - `reserve` Defines that this field should be ignored in from and into bytes functions.
/// [example](#reserve-examples)
///     - Reserve requires the fields type to impl ['Default'](https://doc.rust-lang.org/std/default/trait.Default.html).
/// due to from_bytes needed to provided a value.
/// 
/// # Experimental Field Attributes
/// if you decide to use these remember that they have not been exhaustively tested. when using
/// experimental attributes please be careful and report unexpected behavior to our github issues.
/// - `bits = "{RANGE}"` - Define the bit indexes yourself rather than let the proc macro figure
/// it out. using a rust range in quotes. the RANGE must provide a inclusively below and exclusively
/// above bounded range (ex. bits = "0..2" means use bits 0 and 1 but NOT 2).
/// [example](#bits-attribute-example)
/// - `read_only` - Bondrewd will not include writing/into_bytes logic for the field.
/// - `overlapping_bits = {BITS}` - Tells bondrewd that the provided BITS amount is shared
///  with at least 1 other field and should not be included in the overall structure size.
/// - `redundant` - Tells bondrewd that this field's bits are all shared by at least one other field.
/// Bondrewd will not include the bit length in the structures overall bit length 
/// (because they are redundant).
/// [example](#redundant-examples)
///     - Bondrewd will read the assigned bits but will not write.
///     - This behaves exactly as combining the attributes: 
///         - `read_only`
///         - `overlapping_bits = {FIELD_BIT_LENGTH}` FIELD_BIT_LENGTH being the total amount of bits that the field uses.
/// 
/// # Simple Example
/// This example is on the front page for bondrewd-derive. Here i will be adding some asserts to show what
/// to expect.
/// I will be defining a data structure with 7 total bytes as:
/// - A boolean field named one will be the first bit.
/// - A floating point field named two will be the next 32 bits. floats must be full sized
/// currently.
/// - A signed integer field named three will be the next 14 bits.
/// - An unsigned integer field named four will be the next 6 bits.
/// - Because these fields do not add up to a number divisible by 8 the last 3 bits will be unused.
/// ```
/// use bondrewd::*;
/// #[derive(Bitfields)]
/// #[bondrewd(default_endianness = "be")]
/// struct SimpleExample {
///     // fields that are as expected do not require attributes.
///     one: bool,
///     two: f32,
///     #[bondrewd(bit_length = 14)]
///     three: i16,
///     #[bondrewd(bit_length = 6)]
///     four: u8,
/// }
/// 
/// fn main(){
///     assert_eq!(7, SimpleExample::BYTE_SIZE);
///     assert_eq!(53, SimpleExample::BIT_SIZE);
///     let mut bytes = SimpleExample {
///         one: false,
///         two: -4.25,
///         three: -1034,
///         four: 63,
///     }.into_bytes();
///     // check the output binary is correct. (i did math by hand
///     // to get the binary). each field is separated by a underscore
///     // in the binary assert to make it easy to see.
///     assert_eq!([
///         0b0_1100000, // one_two,
///         0b01000100,  // two,
///         0b00000000,  // two,
///         0b00000000,  // two,
///         0b0_1110111, // two_three,
///         0b1110110_1, // three_four,
///         0b11111_000, // four_unused
///     ], bytes);
///     // use read functions to get the fields value without
///     // doing a from_bytes call.
///     assert_eq!(false, SimpleExample::read_one(&bytes));
///     assert_eq!(-4.25, SimpleExample::read_two(&bytes));
///     assert_eq!(-1034, SimpleExample::read_three(&bytes));
///     assert_eq!(63, SimpleExample::read_four(&bytes));
///     // overwrite the values with new ones in the byte array.
///     SimpleExample::write_one(&mut bytes, true);
///     SimpleExample::write_two(&mut bytes, 5.5);
///     SimpleExample::write_three(&mut bytes, 511);
///     SimpleExample::write_four(&mut bytes, 0);
///     // from bytes uses the read function so there is no need to
///     // assert the read functions again.
///     let reconstructed = SimpleExample::from_bytes(bytes);
///     // check the values read by from bytes and check if they are
///     // what we wrote to the bytes NOT the origanal values.
///     assert_eq!(true,reconstructed.one);
///     assert_eq!(5.5,reconstructed.two);
///     assert_eq!(511,reconstructed.three);
///     assert_eq!(0,reconstructed.four);
/// }
/// ```
/// # Reverse Example
/// Reverse simply makes Bondrewd index the bytes in the output/input buffers in the opposite order. 
/// First index becomes last index and last index becomes the first.
/// ```
/// use bondrewd::*;
/// #[derive(Bitfields)]
/// struct Example {
///     one: u8,
///     two: u8,
///     three: u8,
///     four: u8,
/// }
/// 
/// #[derive(Bitfields)]
/// #[bondrewd(reverse)]
/// struct ExampleReversed {
///     one: u8,
///     two: u8,
///     three: u8,
///     four: u8,
/// }
/// 
/// fn main() {
///     let test = Example {
///         one: 0,
///         two: u8::MAX,
///         three: 0,
///         four: 0b01010101,
///     };
///     let test_reverse = ExampleReversed {
///         one: 0,
///         two: u8::MAX,
///         three: 0,
///         four: 0b01010101,
///     };
///     assert_eq!(test.into_bytes(), [0b00000000, 0b11111111, 0b000000, 0b01010101]);
///     assert_eq!(test_reverse.into_bytes(), [0b01010101, 0b000000, 0b11111111, 0b00000000]);
/// }
/// ```
/// # Bit Positioning Examples
/// Here Bit positioning will control where bit 0 is. for example if you have a field with 2 bits then
/// 2 fields with 3 bits each, bit positioning will define the direction in which it traverses bit indices,
/// so in our example if 0 is the least significant bit the first field would be the least significant bit
/// in the last index in the byte array. `msb0` is the default.
/// ```
/// use bondrewd::*;
/// #[derive(Bitfields)]
/// #[bondrewd(read_from = "msb0")]
/// struct ExampleMSB {
///     #[bondrewd(bit_length = 2)]
///     one: u8,
///     #[bondrewd(bit_length = 3)]
///     two: u8,
///     #[bondrewd(bit_length = 3)]
///     three: u8,
/// }
/// 
/// #[derive(Bitfields)]
/// #[bondrewd(read_from = "lsb0")]
/// struct ExampleLSB {
///     #[bondrewd(bit_length = 2)]
///     one: u8,
///     #[bondrewd(bit_length = 3)]
///     two: u8,
///     #[bondrewd(bit_length = 3)]
///     three: u8,
/// }
/// 
/// fn main() {
///     let test_msb = ExampleMSB {
///         one: 0,
///         two: 5,
///         three: 0,
///     };
///     let test_lsb = ExampleLSB {
///         one: 0,
///         two: 5,
///         three: 0,
///     };
///     // in msb0 field one is the first 2 bits followed by field two
///     // then field three is the last 3 bits.
///     assert_eq!(test_msb.into_bytes(), [0b00_101_000]);
///     // in msb0 field three is the first 3 bits followed by field 
///     // 2 then field one being the last 2 bits
///     assert_eq!(test_lsb.into_bytes(), [0b000_101_00]);
/// }
/// ```
/// When using `reverse` and `read_from` in the same structure:
/// - `lsb0` would begin at the least significant bit in the first byte.
/// - 'msb0` would begin at the most significant bit in the last byte.
/// ```
/// use bondrewd::*;
/// #[derive(Bitfields)]
/// #[bondrewd(read_from = "msb0", reverse)]
/// struct ExampleMSB {
///     #[bondrewd(bit_length = 5)]
///     one: u8,
///     #[bondrewd(bit_length = 4)]
///     two: u8,
///     #[bondrewd(bit_length = 7)]
///     three: u8,
/// }
/// 
/// #[derive(Bitfields)]
/// #[bondrewd(read_from = "lsb0", reverse)]
/// struct ExampleLSB {
///     #[bondrewd(bit_length = 5)]
///     one: u8,
///     #[bondrewd(bit_length = 4)]
///     two: u8,
///     #[bondrewd(bit_length = 7)]
///     three: u8,
/// }
/// 
/// fn main() {
///     let test_msb = ExampleMSB {
///         one: 0,
///         two: u8::MAX,
///         three: 0,
///     };
///     let test_lsb = ExampleLSB {
///         one: 0,
///         two: u8::MAX,
///         three: 0,
///     };
///     // here the 1's belong to feild two. i hope this is understandable.
///     assert_eq!(test_msb.into_bytes(), [0b10000000, 0b00000111]);
///     assert_eq!(test_lsb.into_bytes(), [0b11100000, 0b00000001]);
/// }
/// ```
/// # Endianness Examples
/// There are 2 ways to define endianess of fields that require endianness (multi-byte numbers, char, ...)
/// - Default endianness which will give provided endianness to all fields that require endianness but
/// do not have it defined.
/// - Per field endianess which defines the endianness of a particular field.
/// 
/// Default endianness and per fields endianness can also be used in the same struct
/// ```
/// use bondrewd::*;
/// #[derive(Bitfields)]
/// // tell bondrewd to default to Big Endian
/// #[bondrewd(default_endianness = "be")]
/// struct SimpleExample {
///     // this field will be given the default endianness
///     one: u16,
///     // here we give the field endianness which means it will not use default endianness.
///     #[bondrewd(endianness = "le")]
///     two: u16,
/// }
/// 
/// fn main() {
///     let test = SimpleExample {
///         one: 5,
///         two: 5,
///     };
///     // check that each field are in the correct endianness
///     assert_eq!(test.into_bytes(),[0b00000000, 0b00000101, 0b00000101, 0b00000000]);
/// }
/// ```
/// If you define the endianness of all values that require it default_endianness is not required.
/// ```
/// use bondrewd::*;
/// #[derive(Bitfields)]
/// struct SimpleExample {
///     #[bondrewd(endianness = "be")]
///     one: u16,
///     #[bondrewd(endianness = "le")]
///     two: u16,
///     // because this field does not use more than 1 byte, endianness is not required.
///     three: bool,
/// }
/// 
/// fn main() {
///     let test = SimpleExample {
///         one: 5,
///         two: 5,
///         three: true,
///     };
///     // check that each field are in the correct endianness
///     assert_eq!(test.into_bytes(),[0b00000000, 0b00000101, 0b00000101, 0b00000000, 0b10000000]);
/// }
/// ```
/// # Bitfield Struct as Field Examples
/// Inner structs must implement the 
/// [`Bitfields`](https://docs.rs/bondrewd/latest/bondrewd/trait.Bitfields.html) trait and be given the
/// `struct_size = {BYTE_SIZE}, the BYTE_SIZE being the number of bytes in the outputs byte array or 
/// value in the traits const BYTE_SIZE.
/// ```
/// // this struct uses 52 total bits which means the total BYTE_SIZE is 7.
/// use bondrewd::*;
/// #[derive(Bitfields)]
/// #[bondrewd(default_endianness = "be")]
/// struct Simple {
///     #[bondrewd(bit_length = 3)]
///     one: u8,
///     #[bondrewd(bit_length = 27)]
///     two: char,
///     #[bondrewd(bit_length = 14)]
///     three: u16,
///     four: i8,
/// }
///
/// #[derive(Bitfields)]
/// #[bondrewd(default_endianness = "be")]
/// struct SimpleWithStruct {
///     #[bondrewd(struct_size = 7)]
///     one: Simple,
///     // structs can also be used in arrays.
///     #[bondrewd(struct_size = 7)]
///     two: [Simple; 2],
/// }
/// ```
/// We can also trim the struct to a bit length, this can be very useful for struct that do not use the
/// full amount of bits available in the byte array. For example if we have a struct that uses 4 bits
/// leaving the remaining 4 bits as unused data, we can make a structure with 2 of the bits structure
/// that still only uses 1 byte.
/// ```
/// // this struct uses 4 total bits which means the total BYTE_SIZE is 1.
/// use bondrewd::*;
/// #[derive(Bitfields, Clone)]
/// #[bondrewd(default_endianness = "be")]
/// struct Simple {
///     #[bondrewd(bit_length = 2)]
///     one: u8,
///     #[bondrewd(bit_length = 2)]
///     two: u8,
/// }
///
/// #[derive(Bitfields)]
/// #[bondrewd(default_endianness = "be")]
/// struct SimpleWithStruct {
///     #[bondrewd(struct_size = 1, bit_length = 4)]
///     one: Simple,
///     #[bondrewd(struct_size = 1, bit_length = 4)]
///     two: Simple,
/// }
/// 
/// fn main() {
///     // SimpleWithStruct uses the amount of bits that 2
///     // Simple structures would use.
///     assert_eq!(SimpleWithStruct::BIT_SIZE, Simple::BIT_SIZE * 2);
///     // But both structures use 1 byte.
///     assert_eq!(SimpleWithStruct::BYTE_SIZE, 1);
///     assert_eq!(SimpleWithStruct::BYTE_SIZE, Simple::BYTE_SIZE);
/// }
/// ```
/// # Bitfield Array Examples
/// There are 2 types of arrays in Bondrewd:
/// - Block Arrays are "bit chucks" that define a total-used-bits amount and will drop bits starting
/// at the lowest index.
/// - Element Arrays treat each element of the array as its own field and requires a per element
/// bit-length.
/// ```
/// use bondrewd::*;
/// #[derive(Bitfields)]
/// #[bondrewd(default_endianness = "be")]
/// struct SimpleWithArray {
///     // each u8 in the array contains 4 bits of useful information.
///     #[bondrewd(element_bit_length = 4)]
///     one: [u8; 4],
///     // due to no attributes being present for field `two`, 
///     // no bits are missing and the type of array shouldn't
///     // matter, Bondrewd will use element array logic. also boolean
///     // values are assumed to be 1 bit so this will produce
///     // 5 bits in an output.
///     #[bondrewd(element_bit_length = 1)]
///     two: [bool; 5],
///     // the total amount bits in the array should be 20.
///     // [{4 bits},{8 bits},{8 bits}]
///     #[bondrewd(block_bit_length = 20)]
///     three: [u8; 3],
/// }
/// 
/// fn main() {
///     let test = SimpleWithArray {
///         // the first 4 bits in index 0 and 2 are 1's to show
///         // that they will not be in the final result due to
///         // each element being set to 4 bits, meaning the values
///         // in those indices will become 0 after into_bytes is called.
///         one: [0b11110000, 0b00001111, 0b11110000, 0b00001001],
///         two: [false, true, false, true, false],
///         // its also worth noting that index 0 here will lose the 4
///         // most significant bits.
///         three: [u8::MAX, 0, 0b10101010],
///     };
///     assert_eq!(test.into_bytes(), 
///         [0b0000_1111,  // one[0 and 1]
///          0b0000_1001,  // one[2 and 3]
///          0b01010_111,  // two and three[0]
///          0b1_0000000,  // remaining three[0] and three[1]
///          0b0_1010101,  // remaining three[1] and three[2]
///          0b0_0000000]);// remaining three[2] and 7 unused bits.
/// }
/// ```
/// Structures and Enums can also be used in arrays but there are some extra things to consider.
/// - If bit_length of the structs or enums needs to be smaller than the output of either into_bytes or 
/// into_primitive then it is recommended to use element arrays.
/// - Block Arrays, in my opinion, shouldn't be used for Structs or Enums. because in the below example
/// if the compressed_structures field was to use `block_bit_length = 104` the array would use
/// 48 bits for index 0 and 56 bits for index 1. 
/// ```
/// // this struct uses 52 total bits which means the total
/// // BYTE_SIZE is 7.
/// use bondrewd::*;
/// #[derive(Bitfields)]
/// #[bondrewd(default_endianness = "be")]
/// struct SimpleStruct {
///     #[bondrewd(bit_length = 3)]
///     one: u8,
///     #[bondrewd(bit_length = 27)]
///     two: char,
///     #[bondrewd(bit_length = 14)]
///     three: u16,
///     four: i8,
/// }
/// 
/// // this enum has 4 variants therefore only uses 2 bits
/// // out of 8 in the primitive type.
/// #[derive(BitfieldEnum)]
/// enum SimpleEnum {
///     Zero,
///     One,
///     Two,
///     Three,
/// }
///
/// #[derive(Bitfields)]
/// #[bondrewd(default_endianness = "be")]
/// struct ArraysWithStructsAndEnums {
///     // if the bit size should be the full size of the primitive, only 
///     // the enum attribute is needed.
///     #[bondrewd(enum_primitive = "u8")]
///     four_byte_four_values: [SimpleEnum; 4],
///     // if we use the element_bit_length we can say to only use 2
///     // bits per SimpleEnum, and due to SimpleEnum only needing 2
///     // bits, this could be desirable. means instead of using 4
///     // bytes to store 4 SimpleEnums, we can use 1 byte.
///     #[bondrewd(enum_primitive = "u8", element_bit_length = 2)]
///     one_byte_four_values: [SimpleEnum; 4],
///     // again if the size doesn't need to change, no array attribute
///     // is needed.
///     #[bondrewd(struct_size = 7)]
///     waste_a_byte: [SimpleStruct; 2],
///     // if we want to compress the 2 struct in the array we can
///     // take advantage of the fact our struct is only using 52 out
///     // of 56 bits in the compressed/byte form by adding 
///     // element bit length = 52. this will make the total size of
///     // the 2 structs in compressed/byte form 104 bits instead of
///     // 112.
///     #[bondrewd(struct_size = 7, element_bit_length = 52)]
///     compressed_structures: [SimpleStruct; 2],
/// }
/// ```
/// # Reserve Examples
/// Reserve fields tell Bondrewd to not include logic for reading or writing the field in the from and
/// into bytes functions. Currently only primitive types are supported.
/// ```
/// use bondrewd::*;
/// #[derive(Bitfields)]
/// #[bondrewd(default_endianness = "be")]
/// struct ReserveExample {
///     #[bondrewd(bit_length = 7)]
///     one: u8,
///     #[bondrewd(bit_length = 7)]
///     two: u8,
///     #[bondrewd(bit_length = 10, reserve)]
///     reserve: u16
/// }
/// fn main() {
///     assert_eq!(3, ReserveExample::BYTE_SIZE);
///     assert_eq!(24, ReserveExample::BIT_SIZE);
///     let mut bytes = ReserveExample {
///         one: 127,
///         two: 127,
///         reserve: 1023,
///     }.into_bytes();
///     assert_eq!([0b11111111, 0b11111100, 0b00000000], bytes);
///     assert_eq!(127,ReserveExample::read_one(&bytes));
///     assert_eq!(127,ReserveExample::read_two(&bytes));
///     assert_eq!(0,ReserveExample::read_reserve(&bytes));
///     // quick note write_reserve will actually change the bytes in the byte array.
///     ReserveExample::write_reserve(&mut bytes, 42);
///     assert_eq!(42,ReserveExample::read_reserve(&bytes));
///     // but again from/into bytes doesn't care.
///     let reconstructed = ReserveExample::from_bytes(bytes);
///     assert_eq!(127,reconstructed.one);
///     assert_eq!(127,reconstructed.two);
///     assert_eq!(0,reconstructed.reserve);
/// }
/// ```
/// Reserves do not need to be at the end.
/// ```
/// use bondrewd::*;
/// #[derive(Bitfields)]
/// #[bondrewd(default_endianness = "be", fill_bytes = 3)]
/// struct ReserveExample {
///     #[bondrewd(bit_length = 7)]
///     one: u8,
///     #[bondrewd(bit_length = 10, reserve)]
///     reserve: u16,
///     #[bondrewd(bit_length = 7)]
///     two: u8,
/// }
/// fn main() {
///     assert_eq!(3, ReserveExample::BYTE_SIZE);
///     assert_eq!(24, ReserveExample::BIT_SIZE);
///     let mut bytes = ReserveExample {
///         one: 127,
///         two: 127,
///         reserve: 1023,
///     }.into_bytes();
///     assert_eq!(127, ReserveExample::read_one(&bytes));
///     assert_eq!(127, ReserveExample::read_two(&bytes));
///     assert_eq!(0, ReserveExample::read_reserve(&bytes));
///     ReserveExample::write_reserve(&mut bytes, 42);
///     assert_eq!(42, ReserveExample::read_reserve(&bytes));
///     let reconstructed = ReserveExample::from_bytes(bytes);
///     assert_eq!(127,reconstructed.one);
///     assert_eq!(127,reconstructed.two);
///     assert_eq!(0,reconstructed.reserve);
/// }
/// ```
/// # Fill Bytes Examples
/// Fill bytes is used here to make the total output byte size 3 bytes. If fill bytes attribute was not
/// present the total output byte size would be 2.
/// ```
/// use bondrewd::*;
/// #[derive(Bitfields)]
/// #[bondrewd(default_endianness = "be", fill_bytes = 3)]
/// struct FilledBytes {
///     #[bondrewd(bit_length = 7)]
///     one: u8,
///     #[bondrewd(bit_length = 7)]
///     two: u8,
/// }
/// fn main() {
///     assert_eq!(3, FilledBytes::BYTE_SIZE);
///     assert_eq!(24, FilledBytes::BIT_SIZE);
/// }
/// ```
/// Here im going to compare the example above to the closest alternative using a reserve field:
/// - FilledBytes only has 2 field, so only 2 fields are required for instantiation, where as ReservedBytes
/// still needs a value for the reserve field despite from/into bytes not using the value anyway.
/// - ReservedBytes has 2 extra functions that FilledBytes does not, `write_reserve` and `read_reserve`.
/// - One more thing to consider is reserve fields are currently confined to primitives, if more than 128
/// reserve bits are required at the end, fill_bytes is the only supported way of doing this.
/// ```
/// use bondrewd::*;
/// #[derive(Bitfields)]
/// #[bondrewd(default_endianness = "be")]
/// struct ReservedBytes {
///     #[bondrewd(bit_length = 7)]
///     one: u8,
///     #[bondrewd(bit_length = 7)]
///     two: u8,
///     #[bondrewd(bit_length = 10, reserve)]
///     reserve: u16
/// }
/// fn main() {
///     assert_eq!(3, ReservedBytes::BYTE_SIZE);
///     assert_eq!(24, ReservedBytes::BIT_SIZE);
/// }
/// ```
/// # Enforce Bits Examples
/// Enforce Bits/Bytes Main purpose is to act as a compile time check to ensure how many bit you think
/// are being use is the actual amount of bits being used.  
/// Here i have 2 fields with a total defined bit-length of 6, and then an undecorated boolean field. I
/// also have trust issues so i want to verify that the bool is only using 1 bit making the total bit
/// length of the struct 7 bits. Adding `enforce_bits = 7` will force a compiler error if the calculated
/// total bit length is not 7.
/// ```
/// use bondrewd::*;
/// #[derive(Bitfields)]
/// #[bondrewd(default_endianness = "be", enforce_bits = 7)]
/// struct FilledBytesEnforced {
///     #[bondrewd(bit_length = 4)]
///     one: u8,
///     #[bondrewd(bit_length = 2)]
///     two: u8,
///     three: bool
/// }
/// fn main() {
///     assert_eq!(1, FilledBytesEnforced::BYTE_SIZE);
///     assert_eq!(7, FilledBytesEnforced::BIT_SIZE);
/// }
/// ```
/// Here is the same example where but i messed up the bit_length of the first field making the total 8
/// instead of 7. 
/// ```compile_fail
/// use bondrewd::*;
/// #[derive(Bitfields)]
/// #[bondrewd(default_endianness = "be", enforce_bits = 7)]
/// struct FilledBytesEnforced {
///     #[bondrewd(bit_length = 5)]
///     one: u8,
///     #[bondrewd(bit_length = 2)]
///     two: u8,
///     three: bool
/// }
/// fn main() {
///     assert_eq!(1, FilledBytesEnforced::BYTE_SIZE);
///     assert_eq!(7, FilledBytesEnforced::BIT_SIZE);
/// }
/// ```
///   
/// These next 3 examples all attempt to have near the same end results. A total output of 3 bytes, but the
/// last 10 of them will be reserved/unused (should be ignored and assumed to be 0).
/// 
/// In this first example i will be showing what a struct might look like without fill bytes, then in the
/// second example i will show the the same end result but without a reserve field. First will be defining
/// all 24 total bits as 3 fields marking the last field of 10 bits with the reserve attribute
/// because we don't want from/into bytes functions to process those bytes.
/// ```
/// use bondrewd::*;
/// #[derive(Bitfields)]
/// #[bondrewd(default_endianness = "be", enforce_bytes = 3)]
/// struct FilledBytesEnforced {
///     #[bondrewd(bit_length = 7)]
///     one: u8,
///     #[bondrewd(bit_length = 7)]
///     two: u8,
///     #[bondrewd(bit_length = 10, reserve)]
///     reserve: u16
/// }
/// fn main() {
///     assert_eq!(3, FilledBytesEnforced::BYTE_SIZE);
///     assert_eq!(24, FilledBytesEnforced::BIT_SIZE);
/// }
/// ```
/// Also note that [`fill_bytes`](#fill-bytes-examples) does NOT effect how `enforce_bytes` works. 
/// `enforce_bytes` will check the total bit length before the bits are filled.
///   
/// Here i am telling Bondrewd to make the total bit length 3 bytes using `fill_bytes`.
/// This Example fails to build because only 14 bits are being defined by fields and `enforce_bytes` 
/// is telling Bondrewd to expect 24 bits to be used by defined fields.
/// ```compile_fail
/// use bondrewd::*;
/// #[derive(Bitfields)]
/// #[bondrewd(default_endianness = "be", fill_bytes = 3, enforce_bytes = 3)]
/// struct FilledBytesEnforced {
///     #[bondrewd(bit_length = 7)]
///     one: u8,
///     #[bondrewd(bit_length = 7)]
///     two: u8,
/// }
/// ```
/// To fix this we need to make sure our enforcement value is the amount fo bits defined by the fields NOT
/// the expected FilledBytesEnforced::BYTE_SIZE.
///   
/// Here is the Correct usage of these two attributes working together.
/// ```
/// use bondrewd::*;
/// #[derive(Bitfields)]
/// #[bondrewd(default_endianness = "be", fill_bytes = 3, enforce_bits = 14)]
/// struct FilledBytesEnforced {
///     #[bondrewd(bit_length = 7)]
///     one: u8,
///     #[bondrewd(bit_length = 7)]
///     two: u8,
/// }
/// fn main() {
///     assert_eq!(3, FilledBytesEnforced::BYTE_SIZE);
///     // we are enforcing 14 bits but fill_bytes is creating
///     // an imaginary reserve field from bit index 14 to
///     // index 23
///     assert_eq!(24, FilledBytesEnforced::BIT_SIZE);
/// }
/// ```
/// # Enforce Full Bytes Example
/// `enforce_full_bytes` adds a check during parsing phase of Bondrewd which will throw an error if the
/// total bits determined from the defined fields is not a multiple of 8. This was included for those
/// like me that get paranoid they entered something in wrong.
/// ```compile_fail
/// use bondrewd::*;
/// #[derive(Bitfields)]
/// #[bondrewd(default_endianness = "be", enforce_full_bytes)]
/// struct FilledBytesEnforced {
///     #[bondrewd(bit_length = 7)]
///     one: u8,
///     #[bondrewd(bit_length = 7)]
///     two: u8,
/// }
/// ```
/// In this case if we still wanted fields one and two to remain 7 bits we need to add another field
/// to use the remaining 2 bits.
/// ```
/// use bondrewd::*;
/// #[derive(Bitfields)]
/// #[bondrewd(default_endianness = "be", enforce_full_bytes)]
/// struct FilledBytesEnforced {
///     #[bondrewd(bit_length = 7)]
///     one: u8,
///     #[bondrewd(bit_length = 7)]
///     two: u8,
///     #[bondrewd(bit_length = 2, reserve)]
///     reserve: u16
/// }
/// fn main() {
///     assert_eq!(2, FilledBytesEnforced::BYTE_SIZE);
///     assert_eq!(16, FilledBytesEnforced::BIT_SIZE);
/// }
/// ```
/// # Enum Examples
/// For enum derive examples goto [BitfieldEnum Derive](BitfieldEnum).
/// ```
/// use bondrewd::*;
/// #[derive(BitfieldEnum)]
/// enum SimpleEnum {
///     Zero,
///     One,
///     Two,
///     Three,
/// }
/// #[derive(Bitfields)]
/// #[bondrewd(default_endianness = "le")]
/// struct StructWithEnumExample {
///     #[bondrewd(bit_length = 3)]
///     one: u8,
///     #[bondrewd(enum_primitive = "u8", bit_length = 2)]
///     two: SimpleEnum,
///     #[bondrewd(bit_length = 3)]
///     three: u8,
/// }
/// ```
/// Enums can also be used in [arrays](#bitfield-array-examples)
/// ```
/// use bondrewd::*;
/// #[derive(BitfieldEnum)]
/// enum Simple {
///     One,
///     Two,
///     Three,
///     Four,
/// }
///
/// #[derive(Bitfields)]
/// #[bondrewd(default_endianness = "be")]
/// struct SimpleWithStruct {
///     // bit length is not required for enums but in this case where only 4 possible variants are in
///     // our enums 2 bits is all that is needed. also note using more bits than possible variants is
///     // not a problem because the catch all system will protect you from bad inputs.
///     #[bondrewd(bit_length = 2, enum_primitive = "u8")]
///     one: Simple,
///     #[bondrewd(element_bit_length = 2, enum_primitive = "u8")]
///     two: [Simple; 3],
/// }
/// ```
/// # Bits Attribute Example
/// First i will replicate the [Simple Example](#simple-example) to show an equivalent use.
/// ```
/// use bondrewd::*;
/// #[derive(Bitfields)]
/// #[bondrewd(default_endianness = "be")]
/// struct SimpleExample {
///     // fields that are as expected do not require attributes.
///     // #[bondrewd(bits = "0..1")] this could be used but is not needed.
///     one: bool,
///     // #[bondrewd(bits = "1..33")] this could be used but is not needed.
///     two: f32,
///     #[bondrewd(bits = "33..47")]
///     three: i16,
///     #[bondrewd(bits = "47..53")]
///     four: u8,
/// }
/// 
/// fn main(){
///     assert_eq!(7, SimpleExample::BYTE_SIZE);
///     assert_eq!(53, SimpleExample::BIT_SIZE);
///     let mut bytes = SimpleExample {
///         one: false,
///         two: -4.25,
///         three: -1034,
///         four: 63,
///     }.into_bytes();
///     // check the output binary is correct. (i did math by hand
///     // to get the binary). each field is separated by a underscore
///     // in the binary assert to make it easy to see.
///     assert_eq!([
///         0b0_1100000, // one_two,
///         0b01000100,  // two,
///         0b00000000,  // two,
///         0b00000000,  // two,
///         0b0_1110111, // two_three,
///         0b1110110_1, // three_four,
///         0b11111_000, // four_unused
///     ], bytes);
///     // use read functions to get the fields value without
///     // doing a from_bytes call.
///     assert_eq!(false, SimpleExample::read_one(&bytes));
///     assert_eq!(-4.25, SimpleExample::read_two(&bytes));
///     assert_eq!(-1034, SimpleExample::read_three(&bytes));
///     assert_eq!(63, SimpleExample::read_four(&bytes));
///     // overwrite the values with new ones in the byte array.
///     SimpleExample::write_one(&mut bytes, true);
///     SimpleExample::write_two(&mut bytes, 5.5);
///     SimpleExample::write_three(&mut bytes, 511);
///     SimpleExample::write_four(&mut bytes, 0);
///     // from bytes uses the read function so there is no need to
///     // assert the read functions again.
///     let reconstructed = SimpleExample::from_bytes(bytes);
///     // check the values read by from bytes and check if they are
///     // what we wrote to the bytes NOT the origanal values.
///     assert_eq!(true,reconstructed.one);
///     assert_eq!(5.5,reconstructed.two);
///     assert_eq!(511,reconstructed.three);
///     assert_eq!(0,reconstructed.four);
/// }
/// ```
/// # Redundant Examples
/// In this example we will has fields share data. flags in the example will represent a u8 storing
/// multiple boolean flags, but all of the flags within are also fields in the struct. if we mark
/// flags as `redundant` above the boolean flag fields then flags will be "read_only"(effects nothing 
/// during an into_bytes() call).
/// ```
/// use bondrewd::*;
/// #[derive(Bitfields)]
/// #[bondrewd(default_endianness = "be")]
/// struct SimpleExample {
///     // fields that are as expected do not require attributes.
///     one: bool,
///     two: f32,
///     #[bondrewd(bit_length = 14)]
///     three: i16,
///     // the field is above the bits it shares because bondrewd
///     // will get the last non-shared set of bits to base its start from.
///     #[bondrewd(redundant, bit_length = 6)]
///     flags: u8,
///     flag_one: bool,
///     flag_two: bool,
///     flag_three: bool,
///     flag_four: bool,
///     flag_five: bool,
///     flag_six: bool,
/// }
/// 
/// fn main(){
///     assert_eq!(7, SimpleExample::BYTE_SIZE);
///     assert_eq!(53, SimpleExample::BIT_SIZE);
///     let mut bytes = SimpleExample {
///         one: false,
///         two: -4.25,
///         three: -1034,
///         flags: 0,
///         flag_one: true,
///         flag_two: true,
///         flag_three: true,
///         flag_four: true,
///         flag_five: true,
///         flag_six: true,
///     }.into_bytes();
///     // check the output binary is correct. (i did math by hand
///     // to get the binary). each field is separated by a underscore
///     // in the binary assert to make it easy to see.
///     assert_eq!([
///         0b0_1100000, // one_two,
///         0b01000100,  // two,
///         0b00000000,  // two,
///         0b00000000,  // two,
///         0b0_1110111, // two_three,
///         0b1110110_1, // three_four,
///         0b11111_000, // four_unused
///     ], bytes);
///     // use read functions to get the fields value without
///     // doing a from_bytes call.
///     assert_eq!(false, SimpleExample::read_one(&bytes));
///     assert_eq!(-4.25, SimpleExample::read_two(&bytes));
///     assert_eq!(-1034, SimpleExample::read_three(&bytes));
///     // notice i can still use the read calls for the redundant field.
///     assert_eq!(63, SimpleExample::read_flags(&bytes));
///     assert_eq!(true,SimpleExample::read_flag_one(&bytes));
///     assert_eq!(true,SimpleExample::read_flag_two(&bytes));
///     assert_eq!(true,SimpleExample::read_flag_three(&bytes));
///     assert_eq!(true,SimpleExample::read_flag_four(&bytes));
///     assert_eq!(true,SimpleExample::read_flag_five(&bytes));
///     assert_eq!(true,SimpleExample::read_flag_six(&bytes));
///     // overwrite the values with new ones in the byte array.
///     SimpleExample::write_one(&mut bytes, true);
///     SimpleExample::write_two(&mut bytes, 5.5);
///     SimpleExample::write_three(&mut bytes, 511);
///     // notice i can still use the write calls for the redundant field.
///     SimpleExample::write_flags(&mut bytes, 0);
///     // from bytes uses the read function so there is no need to
///     // assert the read functions again.
///     let reconstructed = SimpleExample::from_bytes(bytes);
///     // check the values read by from bytes and check if they are
///     // what we wrote to the bytes NOT the origanal values.
///     assert_eq!(true,reconstructed.one);
///     assert_eq!(5.5,reconstructed.two);
///     assert_eq!(511,reconstructed.three);
///     assert_eq!(0,reconstructed.flags);
///     assert_eq!(false,reconstructed.flag_one);
///     assert_eq!(false,reconstructed.flag_two);
///     assert_eq!(false,reconstructed.flag_three);
///     assert_eq!(false,reconstructed.flag_four);
///     assert_eq!(false,reconstructed.flag_five);
///     assert_eq!(false,reconstructed.flag_six);
/// }
/// ```
/// we can also have the flags below if we use the `bits` attribute.
/// ```
/// use bondrewd::*;
/// #[derive(Bitfields)]
/// #[bondrewd(default_endianness = "be")]
/// struct SimpleExample {
///     // fields that are as expected do not require attributes.
///     one: bool,
///     two: f32,
///     #[bondrewd(bit_length = 14)]
///     three: i16,
///     // the field is above the bits it shares because bondrewd
///     // will get the last non-shared set of bits to base its start from.
///     flag_one: bool,
///     flag_two: bool,
///     flag_three: bool,
///     flag_four: bool,
///     flag_five: bool,
///     flag_six: bool,
///     #[bondrewd(redundant, bits = "47..53")]
///     flags: u8,
/// }
/// 
/// fn main(){
///     assert_eq!(7, SimpleExample::BYTE_SIZE);
///     assert_eq!(53, SimpleExample::BIT_SIZE);
///     let mut bytes = SimpleExample {
///         one: false,
///         two: -4.25,
///         three: -1034,
///         flags: 0,
///         flag_one: true,
///         flag_two: true,
///         flag_three: true,
///         flag_four: true,
///         flag_five: true,
///         flag_six: true,
///     }.into_bytes();
///     // check the output binary is correct. (i did math by hand
///     // to get the binary). each field is separated by a underscore
///     // in the binary assert to make it easy to see.
///     assert_eq!([
///         0b0_1100000, // one_two,
///         0b01000100,  // two,
///         0b00000000,  // two,
///         0b00000000,  // two,
///         0b0_1110111, // two_three,
///         0b1110110_1, // three_four,
///         0b11111_000, // four_unused
///     ], bytes);
///     // use read functions to get the fields value without
///     // doing a from_bytes call.
///     assert_eq!(false, SimpleExample::read_one(&bytes));
///     assert_eq!(-4.25, SimpleExample::read_two(&bytes));
///     assert_eq!(-1034, SimpleExample::read_three(&bytes));
///     // notice i can still use the read calls for the redundant field.
///     assert_eq!(63, SimpleExample::read_flags(&bytes));
///     assert_eq!(true,SimpleExample::read_flag_one(&bytes));
///     assert_eq!(true,SimpleExample::read_flag_two(&bytes));
///     assert_eq!(true,SimpleExample::read_flag_three(&bytes));
///     assert_eq!(true,SimpleExample::read_flag_four(&bytes));
///     assert_eq!(true,SimpleExample::read_flag_five(&bytes));
///     assert_eq!(true,SimpleExample::read_flag_six(&bytes));
///     // overwrite the values with new ones in the byte array.
///     SimpleExample::write_one(&mut bytes, true);
///     SimpleExample::write_two(&mut bytes, 5.5);
///     SimpleExample::write_three(&mut bytes, 511);
///     // notice i can still use the write calls for the redundant field.
///     SimpleExample::write_flags(&mut bytes, 0);
///     // from bytes uses the read function so there is no need to
///     // assert the read functions again.
///     let reconstructed = SimpleExample::from_bytes(bytes);
///     // check the values read by from bytes and check if they are
///     // what we wrote to the bytes NOT the origanal values.
///     assert_eq!(true,reconstructed.one);
///     assert_eq!(5.5,reconstructed.two);
///     assert_eq!(511,reconstructed.three);
///     assert_eq!(0,reconstructed.flags);
///     assert_eq!(false,reconstructed.flag_one);
///     assert_eq!(false,reconstructed.flag_two);
///     assert_eq!(false,reconstructed.flag_three);
///     assert_eq!(false,reconstructed.flag_four);
///     assert_eq!(false,reconstructed.flag_five);
///     assert_eq!(false,reconstructed.flag_six);
/// }
/// ```
#[proc_macro_derive(Bitfields, attributes(bondrewd,))]
pub fn derive_bitfields(input: TokenStream) -> TokenStream {
    let input = parse_macro_input!(input as DeriveInput);
    // parse the input into a StructInfo which contains all the information we
    // along with some helpful structures to generate our Bitfield code.
    let struct_info = match StructInfo::parse(&input) {
        Ok(parsed_struct) => parsed_struct,
        Err(err) => {
            return TokenStream::from(err.to_compile_error());
        }
    };
    // println!("{:?}", struct_info);
    // get the struct size and name so we can use them in a quote.
    let struct_size = struct_info.total_bytes();
    let struct_name = format_ident!("{}", struct_info.name);

    // get a list of all fields from_bytes logic which gets there bytes from an array called
    // input_byte_buffer.
    let slice_fns: bool;
    #[cfg(not(feature = "slice_fns"))]
    {
        slice_fns = false;
    }
    #[cfg(feature = "slice_fns")]
    {
        slice_fns = true;
    }
    // get a list of all fields into_bytes logic which puts there bytes into an array called
    // output_byte_buffer.
    let fields_into_bytes = match create_into_bytes_field_quotes(&struct_info, slice_fns) {
        Ok(ftb) => ftb,
        Err(err) => return TokenStream::from(err.to_compile_error()),
    };
    let fields_from_bytes = match create_from_bytes_field_quotes(&struct_info, slice_fns) {
        Ok(ffb) => ffb,
        Err(err) => return TokenStream::from(err.to_compile_error()),
    };
    // combine all of the into_bytes quotes separated by newlines
    let into_bytes_quote = fields_into_bytes.into_bytes_fn;
    let mut set_quotes = fields_into_bytes.set_field_fns;

    if let Some(set_slice_quote) = fields_into_bytes.set_slice_field_fns {
        set_quotes = quote! {
            #set_quotes
            #set_slice_quote
        }
    }

    let from_bytes_quote = fields_from_bytes.from_bytes_fn;
    let mut peek_quotes = fields_from_bytes.peek_field_fns;

    if let Some(peek_slice_quote) = fields_from_bytes.peek_slice_field_fns {
        peek_quotes = quote! {
            #peek_quotes
            #peek_slice_quote
        }
    }

    let setters: bool;
    #[cfg(not(feature = "setters"))]
    {
        setters = false;
    }
    #[cfg(feature = "setters")]
    {
        setters = true;
    }
    let setters_quote = if setters {
        match structs::struct_fns::create_into_bytes_field_quotes(&struct_info) {
            Ok(parsed_struct) => parsed_struct,
            Err(err) => {
                return TokenStream::from(err.to_compile_error());
            }
        }
    } else {
        quote! {}
    };

    let getter_setters_quotes = quote! {
        impl #struct_name {
            #peek_quotes
            #set_quotes
            #setters_quote
        }
    };
    let hex;
    #[cfg(feature = "hex_fns")]
    {
        hex = true;
    }
    #[cfg(not(feature = "hex_fns"))]
    {
        hex = false;
    }
    let hex_size = struct_size * 2;
    let hex_fns_quote = if hex {
        quote! {
            impl BitfieldHex<#hex_size> for #struct_name {
                fn from_hex(hex: [u8;#hex_size]) -> Result<Self, BitfieldHexError> {
                    let bytes: [u8; #struct_size] = [0;#struct_size];
                    let mut bytes: [u8; Self::BYTE_SIZE] = [0;Self::BYTE_SIZE];
                    for i in 0usize..#struct_size {
                        let index = i * 2;
                        let index2 = index + 1;
                        let decode_nibble = |c, c_i| match c {
                            b'A'..=b'F' => Ok(c - b'A' + 10u8),
                            b'a'..=b'f' => Ok(c - b'a' + 10u8),
                            b'0'..=b'9' => Ok(c - b'0'),
                            _ => return Err(BitfieldHexError(
                                c as char,
                                c_i,
                            )),
                        };
                        bytes[i] = ((decode_nibble(hex[index], index)? & 0b00001111) << 4) | decode_nibble(hex[index2], index2)?;
                    }
                    Ok(Self::from_bytes(bytes))

                }

                fn into_hex_upper(self) -> [u8;#hex_size] {
                    let bytes = self.into_bytes();
                    let mut output: [u8;#hex_size] = [0; #hex_size];
                    for (i, byte) in (0..#hex_size).step_by(2).zip(bytes) {
                        output[i] = (Self::UPPERS[((byte & 0b11110000) >> 4) as usize]);
                        output[i + 1] = (Self::UPPERS[(byte & 0b00001111) as usize]);
                    }
                    output
                }

                fn into_hex_lower(self) -> [u8;#hex_size] {
                    let bytes = self.into_bytes();
                    let mut output: [u8;#hex_size] = [0; #hex_size];
                    for (i, byte) in (0..#hex_size).step_by(2).zip(bytes) {
                        output[i] = (Self::LOWERS[((byte & 0b11110000) >> 4) as usize]);
                        output[i + 1] = (Self::LOWERS[(byte & 0b00001111) as usize]);
                    }
                    output
                }
            }
        }
    } else {
        quote! {}
    };

    // get the bit size of the entire set of fields to fill in trait requirement.
    let bit_size = struct_info.total_bits();

    // put it all together.
    // to_bytes_quote will put all of the fields in self into a array called output_byte_buffer.
    // so for into_bytes all we need is the fn declaration, the output_byte_buffer, and to return
    // that buffer.
    // from_bytes is essentially the same minus a variable because input_byte_buffer is the input.
    // slap peek quotes inside a impl block at the end and we good to go
    let to_bytes_quote = quote! {
        impl Bitfields<#struct_size> for #struct_name {
            const BIT_SIZE: usize = #bit_size;
            #into_bytes_quote
            #from_bytes_quote
        }
        #getter_setters_quotes
        #hex_fns_quote
    };

    if slice_fns {
        let vis = struct_info.vis;
        let checked_ident = format_ident!("{}Checked", &struct_name);
        let checked_mut_ident = format_ident!("{}CheckedMut", &struct_name);
        let unchecked_functions = fields_from_bytes.peek_slice_field_unchecked_fns;
        let unchecked_mut_functions = fields_into_bytes.set_slice_field_unchecked_fns;
        let to_bytes_quote = quote!{
            #to_bytes_quote
            #vis struct #checked_ident<'a> {
                buffer: &'a [u8],
            }
            impl<'a> #checked_ident<'a> {
                #unchecked_functions
                pub fn from_unchecked_slice(data: &'a [u8]) -> Self {
                    Self{
                        buffer: data
                    }
                }
            }
            #vis struct #checked_mut_ident<'a> {
                buffer: &'a mut [u8],
            }
            impl<'a> #checked_mut_ident<'a> {
                #unchecked_functions
                #unchecked_mut_functions
                pub fn from_unchecked_slice(data: &'a mut [u8]) -> Self {
                    Self{
                        buffer: data
                    }
                }
            }
        };
        TokenStream::from(to_bytes_quote)
    }else{
        TokenStream::from(to_bytes_quote)
    }

    
}

/// Generates an implementation of bondrewd::BitfieldEnum trait.
///   
/// Important Note: u8 is the only primitive type i have tested. My newest code should be able to handle
/// all primitive types but, to reiterate, i have NOT tested any primitive type other than u8.
///
/// # Features
/// - Generates code for the BitfieldEnum trait which allows an enum to be used by Bitfield structs.
/// - Literal values. [example](#literal-example)
/// - Automatic Value Assignment for non-literal variants. Variants are assigned values starting from 0
/// incrementing by 1 skipping values taken by literal definitions (That means you can mix and match
/// inferred values a code defined literal values). [example](#typical-example)
/// - Catch Variants
///     - Catch All variant is used to insure that Results are not needed. Catch all will generate a
///     `_ => {..}` match arm so that enums don't need to have as many variants as there are values in
///     the defined primitive. Catch all can be defined with a `#[bondrewd_enum(invalid)]` attribute or last variant will
///     Automatically become a catch all if no Catch is defined. [example](#custom-catch-all-example)
///     - Catch Value is a variant that will store values that don't match the reset of the variants.
///     using a Catch Value is as simple as making a variant with a primitive value (if the bondrewd_enum
///     attribute is present the primitive types must match). [example](#catch-value-example)
///
/// # Other Features
/// - Support for implementation of [`std::cmp::PartialEq`] for the given primitive (currently only u8)
///
/// # Typical Example
/// Here i am letting the Derive do all of the work. The primitive type will be assumed to be u8 because
/// there are less than 256 variants. Variants that do not define a value will be assigned a value
/// starting with the lowest available value. Also due to the catch all system we can ignore the fact
/// i have not covered all 255 values of a u8 because the last Variant, SimpleEnum::Three is this example,
/// will be used a a default to insure not errors can occur.
/// ```
/// use bondrewd::BitfieldEnum;
/// #[derive(BitfieldEnum, PartialEq, Debug)]
/// enum SimpleEnum {
///     Zero, // assigned value 0
///     One,  // assigned value 1
///     Two,  // assigned value 2
///     Three,// assigned value 3
/// }
/// 
/// fn main(){
///     assert_eq!(SimpleEnum::Zero.into_primitive(), 0);
///     assert_eq!(SimpleEnum::Zero, SimpleEnum::from_primitive(0));
///     assert_eq!(SimpleEnum::One.into_primitive(), 1);
///     assert_eq!(SimpleEnum::One, SimpleEnum::from_primitive(1));
///     assert_eq!(SimpleEnum::Two.into_primitive(), 2);
///     assert_eq!(SimpleEnum::Two, SimpleEnum::from_primitive(2));
///     assert_eq!(SimpleEnum::Three.into_primitive(), 3);
///     for i in 3..=u8::MAX {
///         assert_eq!(SimpleEnum::Three, SimpleEnum::from_primitive(i));
///     }
/// }
/// 
/// ```
/// If you do not want the last variant to be a
/// catch all you must either:
/// - Cover all possible values in the primitive type with a variant each.
/// - Mark the variant you would like to be the catch all [example](#custom-catch-all-example).
/// - Add a catch primitive variant [example](#catch-value-example)
/// # Literal Example
/// ```
/// use bondrewd::BitfieldEnum;
/// #[derive(BitfieldEnum, PartialEq, Debug)]
/// enum SimpleEnum {
///     Life = 42,
///     Min = 0,
///     U8Max = 255,
///     Unlucky = 13,
/// }
/// 
/// fn main(){
///     assert_eq!(SimpleEnum::Life.into_primitive(), 42);
///     assert_eq!(SimpleEnum::Life, SimpleEnum::from_primitive(42));
///     assert_eq!(SimpleEnum::Min.into_primitive(), 0);
///     assert_eq!(SimpleEnum::Min, SimpleEnum::from_primitive(0));
///     assert_eq!(SimpleEnum::U8Max.into_primitive(), 255);
///     assert_eq!(SimpleEnum::U8Max, SimpleEnum::from_primitive(255));
///     assert_eq!(SimpleEnum::Unlucky.into_primitive(), 13);
///     // check all values not defined and 13 get detected as Unlucky
///     for i in 1..42 {
///         assert_eq!(SimpleEnum::Unlucky, SimpleEnum::from_primitive(i));
///     }
///     for i in 43..u8::MAX {
///         assert_eq!(SimpleEnum::Unlucky, SimpleEnum::from_primitive(i));
///     }
/// }
/// ```
/// # Custom Catch All Example
/// If you don't decorate the Enum at all the last variant will be assumed to be an Invalid variant. This
/// means if the input value doesn't match any defined value we can use the Invalid variant as a default.
/// ```
/// use bondrewd::BitfieldEnum;
/// #[derive(BitfieldEnum, PartialEq, Debug)]
/// enum SimpleEnum {
///     Zero, // assigned 0
///     One, // assigned 1
///     Two, // assigned 2
///     Three, // assigned 3 and catches invalid values
/// }
/// 
/// fn main(){
///     assert_eq!(SimpleEnum::Zero.into_primitive(), 0);
///     assert_eq!(SimpleEnum::Zero, SimpleEnum::from_primitive(0));
///     assert_eq!(SimpleEnum::One.into_primitive(), 1);
///     assert_eq!(SimpleEnum::One, SimpleEnum::from_primitive(1));
///     assert_eq!(SimpleEnum::Two.into_primitive(), 2);
///     assert_eq!(SimpleEnum::Two, SimpleEnum::from_primitive(2));
///     assert_eq!(SimpleEnum::Three.into_primitive(), 3);
///     assert_eq!(SimpleEnum::Three, SimpleEnum::from_primitive(3));
///     // remaining possible values are caught as One.
///     for i in 4..=u8::MAX {
///         assert_eq!(SimpleEnum::Three, SimpleEnum::from_primitive(i));
///     }
/// }
/// ```
/// This example shows that we can mark any variant as the catch all variant. In this case Bondrewd will
/// give SimpleEnum::One the value of 1 and make One catch all values not defined because
/// of the invalid attribute.
/// ```
/// use bondrewd::BitfieldEnum;
/// #[derive(BitfieldEnum, PartialEq, Debug)]
/// enum SimpleEnum {
///     Zero, // assigned 0
///     #[bondrewd_enum(invalid)]
///     One, // assigned 1 and catches invalid values
///     Two, // assigned 2
///     Three, // assigned 3
/// }
/// 
/// fn main(){
///     assert_eq!(SimpleEnum::Zero.into_primitive(), 0);
///     assert_eq!(SimpleEnum::Zero, SimpleEnum::from_primitive(0));
///     assert_eq!(SimpleEnum::One.into_primitive(), 1);
///     assert_eq!(SimpleEnum::One, SimpleEnum::from_primitive(1));
///     assert_eq!(SimpleEnum::Two.into_primitive(), 2);
///     assert_eq!(SimpleEnum::Two, SimpleEnum::from_primitive(2));
///     assert_eq!(SimpleEnum::Three.into_primitive(), 3);
///     assert_eq!(SimpleEnum::Three, SimpleEnum::from_primitive(3));
///     // remaining possible values are caught as One.
///     for i in 4..=u8::MAX {
///         assert_eq!(SimpleEnum::One, SimpleEnum::from_primitive(i));
///     }
/// }
/// ```
/// # Catch Value Example
/// In some cases we might need to know what the invalid value passed into from_primitive actually was. In
/// my own code there is an enum field that gets encrypted and can become pretty much any value and cause
/// panics in the library i used before writing Bondrewd. To fix this Bondrewd offers the ability to make 1
/// variant a tuple or struct variant with exactly one field which must be the primitive type the enum
/// gets converted into/from, than the variant values not covered will be stored in the variants field.
/// ```
/// use bondrewd::BitfieldEnum;
/// #[derive(BitfieldEnum, PartialEq, Debug)]
/// enum SimpleEnum {
///     Zero,
///     One,
///     Two,
///     Three(u8),
/// }
/// 
/// fn main(){
///     assert_eq!(SimpleEnum::Zero.into_primitive(), 0);
///     assert_eq!(SimpleEnum::Zero, SimpleEnum::from_primitive(0));
///     assert_eq!(SimpleEnum::One.into_primitive(), 1);
///     assert_eq!(SimpleEnum::One, SimpleEnum::from_primitive(1));
///     assert_eq!(SimpleEnum::Two.into_primitive(), 2);
///     assert_eq!(SimpleEnum::Two, SimpleEnum::from_primitive(2));
///     for i in 3..=u8::MAX {
///         assert_eq!(SimpleEnum::Three(i), SimpleEnum::from_primitive(i));
///     }
/// }
/// ```
/// # Complex Example
/// Here i just want to show that Literals, Auto Value Assignment, and Invalid catch all can all be used
/// together. As you might expect Catch Primitive can not have a Literal value because it stores a value.
/// Here we expect:
/// - SimpleEnum::Nine = 9,
/// - SimpleEnum::One  = 1,
/// - SimpleEnum::Zero = 0 and accept 3, 4, 6, 7, 8, and 10..u8::MAX in from_primitive(),
/// - SimpleEnum::Five = 5,
/// - SimpleEnum::Two  = 2,
/// ```
/// use bondrewd::BitfieldEnum;
/// #[derive(BitfieldEnum, PartialEq, Debug)]
/// enum SimpleEnum {
///     Nine = 9,
///     // because variant `One` is the first non-literal variant it will be
///     // given the first available value
///     One,
///     // Literals can still be a catch all.
///     #[bondrewd_enum(invalid)]
///     Zero = 0,
///     Five = 5,
///     // because variant `One` is the second non-literal variant it will be
///     // given the second available value
///     Two,
/// }
///
/// fn main(){
///     assert_eq!(SimpleEnum::Nine.into_primitive(), 9);
///     assert_eq!(SimpleEnum::Nine, SimpleEnum::from_primitive(9));
///     assert_eq!(SimpleEnum::One.into_primitive(), 1);
///     assert_eq!(SimpleEnum::One, SimpleEnum::from_primitive(1));
///     assert_eq!(SimpleEnum::Zero.into_primitive(), 0);
///     assert_eq!(SimpleEnum::Zero, SimpleEnum::from_primitive(0));
///     assert_eq!(SimpleEnum::Five.into_primitive(), 5);
///     assert_eq!(SimpleEnum::Five, SimpleEnum::from_primitive(5));
///     assert_eq!(SimpleEnum::Two.into_primitive(), 2);
///     assert_eq!(SimpleEnum::Two, SimpleEnum::from_primitive(2));
///     // Invalid tests
///     assert_eq!(SimpleEnum::Zero, SimpleEnum::from_primitive(3));
///     assert_eq!(SimpleEnum::Zero, SimpleEnum::from_primitive(4));
///     assert_eq!(SimpleEnum::Zero, SimpleEnum::from_primitive(6));
///     assert_eq!(SimpleEnum::Zero, SimpleEnum::from_primitive(7));
///     assert_eq!(SimpleEnum::Zero, SimpleEnum::from_primitive(8));
///     for i in 10..=u8::MAX {
///         assert_eq!(SimpleEnum::Zero, SimpleEnum::from_primitive(i));
///     }
/// }
/// ```
#[proc_macro_derive(BitfieldEnum, attributes(bondrewd_enum))]
pub fn derive_bondrewd_enum(input: TokenStream) -> TokenStream {
    // TODO added the ability to give a Catch Value Variant a Literal value.
    let input = parse_macro_input!(input as DeriveInput);
    let enum_info = match EnumInfo::parse(&input) {
        Ok(parsed_enum) => parsed_enum,
        Err(err) => {
            return TokenStream::from(err.to_compile_error());
        }
    };
    let into = match enums::into_bytes::generate_into_bytes(&enum_info) {
        Ok(i) => i,
        Err(err) => return TokenStream::from(err.to_compile_error()),
    };
    let from = match enums::from_bytes::generate_from_bytes(&enum_info) {
        Ok(f) => f,
        Err(err) => return TokenStream::from(err.to_compile_error()),
    };
    let partial_eq = enums::partial_eq::generate_partial_eq(&enum_info);
    let enum_name = enum_info.name;
    let primitive = enum_info.primitive;
    TokenStream::from(quote! {
        impl bondrewd::BitfieldEnum for #enum_name {
            type Primitive = #primitive;
            #into
            #from
        }

        #partial_eq
    })
}