1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
//! A pairing-based threshold cryptosystem for collaborative decryption and signatures.

// Clippy warns that it's dangerous to derive `PartialEq` and explicitly implement `Hash`, but the
// `pairing::bls12_381` types don't implement `Hash`, so we can't derive it.
#![allow(clippy::derive_hash_xor_eq)]
#![warn(missing_docs)]

pub use ff;
pub use group;
pub use pairing;

mod cmp_pairing;
mod into_fr;
mod secret;
mod util;

#[cfg(feature = "codec-support")]
#[macro_use]
mod codec_impl;

pub mod convert;
pub mod error;
pub mod poly;
pub mod serde_impl;

use std::borrow::Borrow;
use std::cmp::Ordering;
use std::fmt;
use std::hash::{Hash, Hasher};
use std::vec::Vec;

use ff::Field;
use group::{CurveAffine, CurveProjective, EncodedPoint};
use hex_fmt::HexFmt;
use log::debug;
use pairing::Engine;
use rand::distributions::{Distribution, Standard};
use rand::{rngs::OsRng, Rng, RngCore, SeedableRng};
use rand_chacha::ChaChaRng;
use serde::{Deserialize, Serialize};
use zeroize::Zeroize;

use crate::cmp_pairing::cmp_projective;
use crate::error::{Error, FromBytesError, FromBytesResult, Result};
use crate::poly::{Commitment, Poly};
use crate::secret::clear_fr;

pub use crate::into_fr::IntoFr;

use convert::{
    fr_from_be_bytes, fr_to_be_bytes, g1_from_be_bytes, g1_to_be_bytes, g2_from_be_bytes,
    g2_to_be_bytes,
};
use util::{derivation_index_into_fr, sha3_256};

use blst::{
    min_pk::{PublicKey as BlstPublicKey, SecretKey as BlstSecretKey, Signature as BlstSignature},
    BLST_ERROR,
};

pub use pairing::bls12_381::{Bls12 as PEngine, Fr, FrRepr, G1Affine, G2Affine, G1, G2};

/// The size of a secret key's representation in bytes.
pub const SK_SIZE: usize = 32;

/// The size of a key's representation in bytes.
pub const PK_SIZE: usize = 48;

/// The size of a signature's representation in bytes.
pub const SIG_SIZE: usize = 96;

/// The domain separator tag
pub const DST: &[u8; 43] = b"BLS_SIG_BLS12381G2_XMD:SHA-256_SSWU_RO_NUL_";

/// A public key.
#[derive(Deserialize, Serialize, Copy, Clone, PartialEq, Eq)]
pub struct PublicKey(#[serde(with = "serde_impl::projective")] G1);

impl Hash for PublicKey {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.0.into_affine().into_compressed().as_ref().hash(state);
    }
}

impl fmt::Debug for PublicKey {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let uncomp = self.0.into_affine().into_uncompressed();
        write!(f, "PublicKey({:0.10})", HexFmt(uncomp))
    }
}

impl PartialOrd for PublicKey {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl Ord for PublicKey {
    fn cmp(&self, other: &Self) -> Ordering {
        cmp_projective(&self.0, &other.0)
    }
}

impl PublicKey {
    /// Returns `true` if the signature matches the element of `G2`.
    pub fn verify_g2<H: Into<G2Affine>>(&self, sig: &Signature, hash: H) -> bool {
        PEngine::pairing(self.0, hash) == PEngine::pairing(G1Affine::one(), sig.0)
    }

    /// Returns `true` if the signature matches the message.
    pub fn verify<M: AsRef<[u8]>>(&self, sig: &Signature, msg: M) -> bool {
        // TC
        //self.verify_g2(sig, hash_g2(msg))
        // BLST
        let blst_sig = BlstSignature::from_bytes(&sig.to_bytes()).unwrap();
        let blst_pk = BlstPublicKey::from_bytes(&self.to_bytes()).unwrap();
        blst_sig.verify(false, msg.as_ref(), DST, &[], &blst_pk, false) == BLST_ERROR::BLST_SUCCESS
        // DISABLED
        //true
    }

    /// Encrypts the message using the OS random number generator.
    ///
    /// Uses the `OsRng` by default. To pass in a custom random number generator, use
    /// `encrypt_with_rng()`.
    pub fn encrypt<M: AsRef<[u8]>>(&self, msg: M) -> Ciphertext {
        self.encrypt_with_rng(&mut OsRng, msg)
    }

    /// Encrypts the message.
    pub fn encrypt_with_rng<R: RngCore, M: AsRef<[u8]>>(&self, rng: &mut R, msg: M) -> Ciphertext {
        let r: Fr = Fr::random(rng);
        let u = G1Affine::one().mul(r);
        let v: Vec<u8> = {
            let g = self.0.into_affine().mul(r);
            xor_with_hash(g, msg.as_ref())
        };
        let w = hash_g1_g2(u, &v).into_affine().mul(r);
        Ciphertext(u, v, w)
    }

    /// Derives a child public key for a given index.
    pub fn derive_child(&self, index: &[u8]) -> Self {
        let index_fr = derivation_index_into_fr(index);
        let mut child_g1 = self.0;
        child_g1.mul_assign(index_fr);
        PublicKey(child_g1)
    }

    /// Returns the key with the given representation, if valid.
    pub fn from_bytes(bytes: [u8; PK_SIZE]) -> FromBytesResult<Self> {
        let g1 = g1_from_be_bytes(bytes)?;
        Ok(PublicKey(g1))
    }

    /// Returns a byte string representation of the public key.
    pub fn to_bytes(self) -> [u8; PK_SIZE] {
        g1_to_be_bytes(self.0)
    }
}

/// A public key share.
#[cfg_attr(feature = "codec-support", derive(codec::Encode, codec::Decode))]
#[derive(Deserialize, Serialize, Clone, Copy, PartialEq, Eq, Hash, Ord, PartialOrd)]
pub struct PublicKeyShare(PublicKey);

impl fmt::Debug for PublicKeyShare {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let uncomp = (self.0).0.into_affine().into_uncompressed();
        write!(f, "PublicKeyShare({:0.10})", HexFmt(uncomp))
    }
}

impl PublicKeyShare {
    /// Returns `true` if the signature matches the element of `G2`.
    pub fn verify_g2<H: Into<G2Affine>>(&self, sig: &SignatureShare, hash: H) -> bool {
        self.0.verify_g2(&sig.0, hash)
    }

    /// Returns `true` if the signature matches the message.
    pub fn verify<M: AsRef<[u8]>>(&self, sig: &SignatureShare, msg: M) -> bool {
        // TC
        //self.verify_g2(sig, hash_g2(msg))
        // BLST
        let blst_sig = BlstSignature::from_bytes(&sig.to_bytes()).unwrap();
        let blst_pk = BlstPublicKey::from_bytes(&self.to_bytes()).unwrap();
        blst_sig.verify(false, msg.as_ref(), DST, &[], &blst_pk, false) == BLST_ERROR::BLST_SUCCESS
        // DISABLED
        //true
    }

    /// Returns `true` if the decryption share matches the ciphertext.
    pub fn verify_decryption_share(&self, share: &DecryptionShare, ct: &Ciphertext) -> bool {
        let Ciphertext(ref u, ref v, ref w) = *ct;
        let hash = hash_g1_g2(*u, v);
        PEngine::pairing(share.0, hash) == PEngine::pairing((self.0).0, *w)
    }

    /// Derives a child public key share for a given index.
    pub fn derive_child(&self, index: &[u8]) -> Self {
        PublicKeyShare(self.0.derive_child(index))
    }

    /// Returns the key share with the given representation, if valid.
    pub fn from_bytes(bytes: [u8; PK_SIZE]) -> FromBytesResult<Self> {
        Ok(PublicKeyShare(PublicKey::from_bytes(bytes)?))
    }

    /// Returns a byte string representation of the public key share.
    pub fn to_bytes(self) -> [u8; PK_SIZE] {
        self.0.to_bytes()
    }
}

/// A signature.
// Note: Random signatures can be generated for testing.
#[derive(Deserialize, Serialize, Clone, PartialEq, Eq)]
pub struct Signature(#[serde(with = "serde_impl::projective")] G2);

impl PartialOrd for Signature {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl Ord for Signature {
    fn cmp(&self, other: &Self) -> Ordering {
        cmp_projective(&self.0, &other.0)
    }
}

impl Distribution<Signature> for Standard {
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Signature {
        Signature(G2::random(rng))
    }
}

impl fmt::Debug for Signature {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let uncomp = self.0.into_affine().into_uncompressed();
        write!(f, "Signature({:0.10})", HexFmt(uncomp))
    }
}

impl Hash for Signature {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.0.into_affine().into_compressed().as_ref().hash(state);
    }
}

impl Signature {
    /// Returns `true` if the signature contains an odd number of ones.
    pub fn parity(&self) -> bool {
        let uncomp = self.0.into_affine().into_uncompressed();
        let xor_bytes: u8 = uncomp.as_ref().iter().fold(0, |result, byte| result ^ byte);
        let parity = 0 != xor_bytes.count_ones() % 2;
        debug!("Signature: {:0.10}, parity: {}", HexFmt(uncomp), parity);
        parity
    }

    /// Returns the signature with the given representation, if valid.
    pub fn from_bytes(bytes: [u8; SIG_SIZE]) -> FromBytesResult<Self> {
        let g2 = g2_from_be_bytes(bytes)?;
        Ok(Signature(g2))
    }

    /// Returns a byte string representation of the signature.
    pub fn to_bytes(&self) -> [u8; SIG_SIZE] {
        g2_to_be_bytes(self.0)
    }
}

/// A signature share.
// Note: Random signature shares can be generated for testing.
#[cfg_attr(feature = "codec-support", derive(codec::Encode, codec::Decode))]
#[derive(Deserialize, Serialize, Clone, PartialEq, Eq, Hash, Ord, PartialOrd)]
pub struct SignatureShare(pub Signature);

impl Distribution<SignatureShare> for Standard {
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> SignatureShare {
        SignatureShare(rng.gen())
    }
}

impl fmt::Debug for SignatureShare {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let uncomp = (self.0).0.into_affine().into_uncompressed();
        write!(f, "SignatureShare({:0.10})", HexFmt(uncomp))
    }
}

impl SignatureShare {
    /// Returns the signature share with the given representation, if valid.
    pub fn from_bytes(bytes: [u8; SIG_SIZE]) -> FromBytesResult<Self> {
        Ok(SignatureShare(Signature::from_bytes(bytes)?))
    }

    /// Returns a byte string representation of the signature share.
    pub fn to_bytes(&self) -> [u8; SIG_SIZE] {
        self.0.to_bytes()
    }
}

/// A secret key; wraps a single prime field element. The field element is
/// heap allocated to avoid any stack copying that result when passing
/// `SecretKey`s between stack frames.
///
/// # Serde integration
/// `SecretKey` implements `Deserialize` but not `Serialize` to avoid accidental
/// serialization in insecure contexts. To enable both use the `::serde_impl::SerdeSecret`
/// wrapper which implements both `Deserialize` and `Serialize`.
#[derive(PartialEq, Eq, Clone)]
pub struct SecretKey(Fr);

impl Zeroize for SecretKey {
    fn zeroize(&mut self) {
        clear_fr(&mut self.0)
    }
}

impl Drop for SecretKey {
    fn drop(&mut self) {
        self.zeroize();
    }
}

/// Creates a `SecretKey` containing the zero prime field element.
impl Default for SecretKey {
    fn default() -> Self {
        let mut fr = Fr::zero();
        SecretKey::from_mut(&mut fr)
    }
}

impl Distribution<SecretKey> for Standard {
    /// Creates a new random instance of `SecretKey`. If you do not need to specify your own RNG,
    /// you should use the [`SecretKey::random()`](struct.SecretKey.html#method.random) constructor,
    /// which uses [`rand::thread_rng()`](https://docs.rs/rand/0.7.2/rand/fn.thread_rng.html)
    /// internally as its RNG.
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> SecretKey {
        SecretKey(Fr::random(rng))
    }
}

/// A debug statement where the secret prime field element is redacted.
impl fmt::Debug for SecretKey {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_tuple("SecretKey").field(&DebugDots).finish()
    }
}

impl SecretKey {
    /// Creates a new `SecretKey` from a mutable reference to a field element. This constructor
    /// takes a reference to avoid any unnecessary stack copying/moving of secrets (i.e. the field
    /// element). The field element is copied bytewise onto the heap, the resulting `Box` is
    /// stored in the returned `SecretKey`.
    ///
    /// *WARNING* this constructor will overwrite the referenced `Fr` element with zeros after it
    /// has been copied onto the heap.
    pub fn from_mut(fr: &mut Fr) -> Self {
        let sk = SecretKey(*fr);
        clear_fr(fr);
        sk
    }

    /// Creates a new random instance of `SecretKey`.
    ///
    /// If you want to use/define your own random number generator, you should use the constructor:
    /// [`SecretKey::sample()`](struct.SecretKey.html#impl-Distribution<SecretKey>). If you do not
    /// need to specify your own RNG, you should use the
    /// [`SecretKey::random()`](struct.SecretKey.html#method.random) constructor, which uses
    /// [`rand::thread_rng()`](https://docs.rs/rand/0.7.2/rand/fn.thread_rng.html) internally as its
    /// RNG.
    pub fn random() -> Self {
        rand::random()
    }

    /// Returns the matching public key.
    pub fn public_key(&self) -> PublicKey {
        PublicKey(G1Affine::one().mul(self.0))
    }

    /// Signs the given element of `G2`.
    pub fn sign_g2<H: Into<G2Affine>>(&self, hash: H) -> Signature {
        Signature(hash.into().mul(self.0))
    }

    /// Signs the given message.
    pub fn sign<M: AsRef<[u8]>>(&self, msg: M) -> Signature {
        // TC
        //self.sign_g2(hash_g2(msg))
        // BLST
        let blst_sk = BlstSecretKey::from_bytes(&self.to_bytes()).unwrap();
        let blst_sig = blst_sk.sign(msg.as_ref(), DST, &[]);
        Signature::from_bytes(blst_sig.to_bytes()).unwrap()
        // DISABLED
        //Signature::from_bytes([
        //    174, 110, 104, 53, 218, 40, 126, 73, 178, 216, 213, 13, 22, 20,
        //    166, 46, 201, 163, 42, 74, 181, 235, 176, 22, 48, 117, 85, 234,
        //    236, 215, 64, 46, 166, 100, 98, 63, 112, 27, 79, 224, 189, 80,
        //    214, 39, 45, 233, 94, 141, 1, 14, 227, 20, 128, 126, 235, 99, 222,
        //    6, 89, 192, 186, 12, 237, 209, 190, 36, 2, 126, 48, 168, 57, 240,
        //    25, 169, 238, 190, 77, 132, 88, 41, 192, 45, 221, 113, 162, 17,
        //    127, 230, 122, 254, 54, 247, 58, 169, 160, 151
        //]).unwrap()
    }

    /// Converts the secret key to big endian bytes
    pub fn to_bytes(&self) -> [u8; SK_SIZE] {
        fr_to_be_bytes(self.0)
    }

    /// Deserialize from big endian bytes
    pub fn from_bytes(bytes: [u8; SK_SIZE]) -> FromBytesResult<Self> {
        let mut fr = fr_from_be_bytes(bytes)?;
        Ok(SecretKey::from_mut(&mut fr))
    }

    /// Returns the decrypted text, or `None`, if the ciphertext isn't valid.
    pub fn decrypt(&self, ct: &Ciphertext) -> Option<Vec<u8>> {
        if !ct.verify() {
            return None;
        }
        let Ciphertext(ref u, ref v, _) = *ct;
        let g = u.into_affine().mul(self.0);
        Some(xor_with_hash(g, v))
    }

    /// Generates a non-redacted debug string. This method differs from
    /// the `Debug` implementation in that it *does* leak the secret prime
    /// field element.
    pub fn reveal(&self) -> String {
        format!("SecretKey({:?})", self.0)
    }

    /// Derives a child secret key for a given index.
    pub fn derive_child(&self, index: &[u8]) -> Self {
        let mut index_fr = derivation_index_into_fr(index);
        index_fr.mul_assign(&self.0);
        SecretKey(index_fr)
    }
}

/// A secret key share.
///
/// # Serde integration
/// `SecretKeyShare` implements `Deserialize` but not `Serialize` to avoid accidental
/// serialization in insecure contexts. To enable both use the `::serde_impl::SerdeSecret`
/// wrapper which implements both `Deserialize` and `Serialize`.
#[derive(Clone, PartialEq, Eq, Default)]
pub struct SecretKeyShare(SecretKey);

/// Can be used to create a new random instance of `SecretKeyShare`. This is only useful for testing
/// purposes as such a key has not been derived from a `SecretKeySet`.
impl Distribution<SecretKeyShare> for Standard {
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> SecretKeyShare {
        SecretKeyShare(rng.gen())
    }
}

impl fmt::Debug for SecretKeyShare {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_tuple("SecretKeyShare").field(&DebugDots).finish()
    }
}

impl SecretKeyShare {
    /// Creates a new `SecretKeyShare` from a mutable reference to a field element. This
    /// constructor takes a reference to avoid any unnecessary stack copying/moving of secrets
    /// field elements. The field element will be copied bytewise onto the heap, the resulting
    /// `Box` is stored in the `SecretKey` which is then wrapped in a `SecretKeyShare`.
    ///
    /// *WARNING* this constructor will overwrite the pointed to `Fr` element with zeros once it
    /// has been copied into a new `SecretKeyShare`.
    pub fn from_mut(fr: &mut Fr) -> Self {
        SecretKeyShare(SecretKey::from_mut(fr))
    }

    /// Returns the matching public key share.
    pub fn public_key_share(&self) -> PublicKeyShare {
        PublicKeyShare(self.0.public_key())
    }

    /// Signs the given element of `G2`.
    pub fn sign_g2<H: Into<G2Affine>>(&self, hash: H) -> SignatureShare {
        SignatureShare(self.0.sign_g2(hash))
    }

    /// Signs the given message.
    pub fn sign<M: AsRef<[u8]>>(&self, msg: M) -> SignatureShare {
        SignatureShare(self.0.sign(msg))
    }

    /// Returns a decryption share, or `None`, if the ciphertext isn't valid.
    pub fn decrypt_share(&self, ct: &Ciphertext) -> Option<DecryptionShare> {
        if !ct.verify() {
            return None;
        }
        Some(self.decrypt_share_no_verify(ct))
    }

    /// Returns a decryption share, without validating the ciphertext.
    pub fn decrypt_share_no_verify(&self, ct: &Ciphertext) -> DecryptionShare {
        DecryptionShare(ct.0.into_affine().mul((self.0).0))
    }

    /// Generates a non-redacted debug string. This method differs from
    /// the `Debug` implementation in that it *does* leak the secret prime
    /// field element.
    pub fn reveal(&self) -> String {
        format!("SecretKeyShare({:?})", (self.0).0)
    }

    /// Derives a child secret key share for a given index.
    pub fn derive_child(&self, index: &[u8]) -> Self {
        SecretKeyShare(self.0.derive_child(index))
    }

    /// Serializes to big endian bytes
    pub fn to_bytes(&self) -> [u8; SK_SIZE] {
        self.0.to_bytes()
    }

    /// Deserializes from big endian bytes
    pub fn from_bytes(bytes: [u8; SK_SIZE]) -> FromBytesResult<Self> {
        Ok(SecretKeyShare(SecretKey::from_bytes(bytes)?))
    }
}

/// An encrypted message.
#[derive(Deserialize, Serialize, Debug, Clone, PartialEq, Eq)]
pub struct Ciphertext(
    #[serde(with = "serde_impl::projective")] G1,
    Vec<u8>,
    #[serde(with = "serde_impl::projective")] G2,
);

impl Hash for Ciphertext {
    fn hash<H: Hasher>(&self, state: &mut H) {
        let Ciphertext(ref u, ref v, ref w) = *self;
        u.into_affine().into_compressed().as_ref().hash(state);
        v.hash(state);
        w.into_affine().into_compressed().as_ref().hash(state);
    }
}

impl PartialOrd for Ciphertext {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl Ord for Ciphertext {
    fn cmp(&self, other: &Self) -> Ordering {
        let Ciphertext(ref u0, ref v0, ref w0) = self;
        let Ciphertext(ref u1, ref v1, ref w1) = other;
        cmp_projective(u0, u1)
            .then(v0.cmp(v1))
            .then(cmp_projective(w0, w1))
    }
}

impl Ciphertext {
    /// Returns `true` if this is a valid ciphertext. This check is necessary to prevent
    /// chosen-ciphertext attacks.
    pub fn verify(&self) -> bool {
        let Ciphertext(ref u, ref v, ref w) = *self;
        let hash = hash_g1_g2(*u, v);
        PEngine::pairing(G1Affine::one(), *w) == PEngine::pairing(*u, hash)
    }

    /// Returns byte representation of Ciphertext
    pub fn to_bytes(&self) -> Vec<u8> {
        let Ciphertext(ref u, ref v, ref w) = *self;
        let mut result: Vec<u8> = Default::default();
        result.extend(u.into_affine().into_compressed().as_ref());
        result.extend(w.into_affine().into_compressed().as_ref());
        result.extend(v);
        result
    }

    /// Returns the Ciphertext with the given representation, if valid.
    pub fn from_bytes(bytes: &[u8]) -> FromBytesResult<Self> {
        if bytes.len() < PK_SIZE + SIG_SIZE + 1 {
            return Err(FromBytesError::Invalid);
        }

        let mut u_compressed: <G1Affine as CurveAffine>::Compressed = EncodedPoint::empty();
        u_compressed.as_mut().copy_from_slice(&bytes[0..PK_SIZE]);

        let mut w_compressed: <G2Affine as CurveAffine>::Compressed = EncodedPoint::empty();
        w_compressed
            .as_mut()
            .copy_from_slice(&bytes[PK_SIZE..PK_SIZE + SIG_SIZE]);

        let v: Vec<u8> = (&bytes[PK_SIZE + SIG_SIZE..]).to_vec();

        Ok(Self(
            u_compressed
                .into_affine()
                .ok()
                .ok_or(FromBytesError::Invalid)?
                .into_projective(),
            v,
            w_compressed
                .into_affine()
                .ok()
                .ok_or(FromBytesError::Invalid)?
                .into_projective(),
        ))
    }
}

/// A decryption share. A threshold of decryption shares can be used to decrypt a message.
#[derive(Clone, Deserialize, Serialize, PartialEq, Eq)]
pub struct DecryptionShare(#[serde(with = "serde_impl::projective")] G1);

impl Distribution<DecryptionShare> for Standard {
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> DecryptionShare {
        DecryptionShare(G1::random(rng))
    }
}

impl Hash for DecryptionShare {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.0.into_affine().into_compressed().as_ref().hash(state);
    }
}

impl fmt::Debug for DecryptionShare {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_tuple("DecryptionShare").field(&DebugDots).finish()
    }
}

impl DecryptionShare {
    /// Deserializes the share from big endian bytes
    pub fn from_bytes(bytes: [u8; PK_SIZE]) -> FromBytesResult<Self> {
        let g1 = g1_from_be_bytes(bytes)?;
        Ok(DecryptionShare(g1))
    }

    /// Serializes the share as big endian bytes
    pub fn to_bytes(&self) -> [u8; PK_SIZE] {
        g1_to_be_bytes(self.0)
    }
}

/// A public key and an associated set of public key shares.
#[derive(Serialize, Deserialize, Clone, PartialEq, Eq, Ord, PartialOrd)]
pub struct PublicKeySet {
    /// The coefficients of a polynomial whose value at `0` is the "master key", and value at
    /// `i + 1` is key share number `i`.
    commit: Commitment,
}

impl Hash for PublicKeySet {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.commit.hash(state);
    }
}

impl fmt::Debug for PublicKeySet {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("PublicKeySet")
            .field("public_key", &self.public_key())
            .field("threshold", &self.threshold())
            .finish()
    }
}

impl From<Commitment> for PublicKeySet {
    fn from(commit: Commitment) -> PublicKeySet {
        PublicKeySet { commit }
    }
}

impl PublicKeySet {
    /// Returns the threshold `t`: any set of `t + 1` signature shares can be combined into a full
    /// signature.
    pub fn threshold(&self) -> usize {
        self.commit.degree()
    }

    /// Returns the public key.
    pub fn public_key(&self) -> PublicKey {
        PublicKey(self.commit.coeff[0])
    }

    /// Returns the `i`-th public key share.
    pub fn public_key_share<T: IntoFr>(&self, i: T) -> PublicKeyShare {
        let value = self.commit.evaluate(into_fr_plus_1(i));
        PublicKeyShare(PublicKey(value))
    }

    /// Combines the shares into a signature that can be verified with the main public key.
    ///
    /// The validity of the shares is not checked: If one of them is invalid, the resulting
    /// signature also is. Only returns an error if there is a duplicate index or too few shares.
    ///
    /// Validity of signature shares should be checked beforehand, or validity of the result
    /// afterwards:
    ///
    /// ```
    /// # extern crate rand;
    /// #
    /// # use std::collections::BTreeMap;
    /// # use blsttc::SecretKeySet;
    /// #
    /// let sk_set = SecretKeySet::random(3, &mut rand::thread_rng());
    /// let sk_shares: Vec<_> = (0..6).map(|i| sk_set.secret_key_share(i)).collect();
    /// let pk_set = sk_set.public_keys();
    /// let msg = "Happy birthday! If this is signed, at least four people remembered!";
    ///
    /// // Create four signature shares for the message.
    /// let sig_shares: BTreeMap<_, _> = (0..4).map(|i| (i, sk_shares[i].sign(msg))).collect();
    ///
    /// // Validate the signature shares.
    /// for (i, sig_share) in &sig_shares {
    ///     assert!(pk_set.public_key_share(*i).verify(sig_share, msg));
    /// }
    ///
    /// // Combine them to produce the main signature.
    /// let sig = pk_set.combine_signatures(&sig_shares).expect("not enough shares");
    ///
    /// // Validate the main signature. If the shares were valid, this can't fail.
    /// assert!(pk_set.public_key().verify(&sig, msg));
    /// ```
    pub fn combine_signatures<T, I, S: Borrow<SignatureShare>>(
        &self,
        shares: I,
    ) -> Result<Signature>
    where
        I: IntoIterator<Item = (T, S)>,
        T: IntoFr,
    {
        let samples = shares
            .into_iter()
            .map(|(i, share)| (i, (share.borrow().0).0));
        Ok(Signature(interpolate(self.commit.degree(), samples)?))
    }

    /// Combines the shares to decrypt the ciphertext.
    pub fn decrypt<'a, T, I>(&self, shares: I, ct: &Ciphertext) -> Result<Vec<u8>>
    where
        I: IntoIterator<Item = (T, &'a DecryptionShare)>,
        T: IntoFr,
    {
        let samples = shares.into_iter().map(|(i, share)| (i, &share.0));
        let g = interpolate(self.commit.degree(), samples)?;
        Ok(xor_with_hash(g, &ct.1))
    }

    /// Derives a child public key set for a given index.
    pub fn derive_child(&self, index: &[u8]) -> Self {
        let index_fr = derivation_index_into_fr(index);
        let child_coeffs: Vec<G1> = self
            .commit
            .coeff
            .iter()
            .map(|coeff| {
                let mut child_coeff = *coeff;
                child_coeff.mul_assign(index_fr);
                child_coeff
            })
            .collect();
        PublicKeySet::from(Commitment::from(child_coeffs))
    }

    /// Serializes to big endian bytes
    pub fn to_bytes(&self) -> Vec<u8> {
        self.commit.to_bytes()
    }

    /// Deserializes from big endian bytes
    pub fn from_bytes(bytes: Vec<u8>) -> FromBytesResult<Self> {
        let commit = Commitment::from_bytes(bytes)?;
        Ok(PublicKeySet { commit })
    }
}

/// A secret key and an associated set of secret key shares.
#[derive(Clone, PartialEq, Eq)]
pub struct SecretKeySet {
    /// The coefficients of a polynomial whose value at `0` is the "master key", and value at
    /// `i + 1` is key share number `i`.
    poly: Poly,
}

impl From<Poly> for SecretKeySet {
    fn from(poly: Poly) -> SecretKeySet {
        SecretKeySet { poly }
    }
}

impl SecretKeySet {
    /// Creates a set of secret key shares, where any `threshold + 1` of them can collaboratively
    /// sign and decrypt. This constructor is identical to the `SecretKeySet::try_random()` in every
    /// way except that this constructor panics if the other returns an error.
    ///
    /// # Panic
    ///
    /// Panics if the `threshold` is too large for the coefficients to fit into a `Vec`.
    pub fn random<R: Rng>(threshold: usize, rng: &mut R) -> Self {
        SecretKeySet::try_random(threshold, rng)
            .unwrap_or_else(|e| panic!("Failed to create random `SecretKeySet`: {}", e))
    }

    /// Creates a set of secret key shares, where any `threshold + 1` of them can collaboratively
    /// sign and decrypt. This constructor is identical to the `SecretKeySet::random()` in every
    /// way except that this constructor returns an `Err` where the `random` would panic.
    pub fn try_random<R: Rng>(threshold: usize, rng: &mut R) -> Result<Self> {
        Poly::try_random(threshold, rng).map(SecretKeySet::from)
    }

    /// Returns the threshold `t`: any set of `t + 1` signature shares can be combined into a full
    /// signature.
    pub fn threshold(&self) -> usize {
        self.poly.degree()
    }

    /// Returns the `i`-th secret key share.
    pub fn secret_key_share<T: IntoFr>(&self, i: T) -> SecretKeyShare {
        let mut fr = self.poly.evaluate(into_fr_plus_1(i));
        SecretKeyShare::from_mut(&mut fr)
    }

    /// Returns the corresponding public key set. That information can be shared publicly.
    pub fn public_keys(&self) -> PublicKeySet {
        PublicKeySet {
            commit: self.poly.commitment(),
        }
    }

    /// Returns a reference to the polynomial
    pub fn poly(&self) -> &Poly {
        &self.poly
    }

    /// Returns the secret master key.
    pub fn secret_key(&self) -> SecretKey {
        let mut fr = self.poly.evaluate(0);
        SecretKey::from_mut(&mut fr)
    }

    /// Derives a child secret key set for a given index.
    pub fn derive_child(&self, index: &[u8]) -> Self {
        // Equivalent to self.poly.clone() * index_fr;
        // The code here follows the same structure as in PublicKeySet for
        // similarity / symmetry / aesthetics, since Commitment can't be
        // multiplied by Fr the same way Poly can.
        let index_fr = derivation_index_into_fr(index);
        let child_coeffs: Vec<Fr> = self
            .poly
            .coeff
            .iter()
            .map(|coeff| {
                let mut child_coeff = *coeff;
                child_coeff.mul_assign(&index_fr);
                child_coeff
            })
            .collect();
        SecretKeySet::from(Poly::from(child_coeffs))
    }

    /// Serializes to big endian bytes
    pub fn to_bytes(&self) -> Vec<u8> {
        self.poly.to_bytes()
    }

    /// Deserializes from big endian bytes
    pub fn from_bytes(bytes: Vec<u8>) -> FromBytesResult<Self> {
        let poly = Poly::from_bytes(bytes)?;
        Ok(SecretKeySet { poly })
    }
}

/// Returns a hash of the given message in `G2`.
pub fn hash_g2<M: AsRef<[u8]>>(msg: M) -> G2 {
    let digest = sha3_256(msg.as_ref());
    G2::random(&mut ChaChaRng::from_seed(digest))
}

/// Returns a hash of the group element and message, in the second group.
fn hash_g1_g2<M: AsRef<[u8]>>(g1: G1, msg: M) -> G2 {
    // If the message is large, hash it, otherwise copy it.
    // TODO: Benchmark and optimize the threshold.
    let mut msg = if msg.as_ref().len() > 64 {
        sha3_256(msg.as_ref()).to_vec()
    } else {
        msg.as_ref().to_vec()
    };
    msg.extend(g1.into_affine().into_compressed().as_ref());
    hash_g2(&msg)
}

/// Returns the bitwise xor of `bytes` with a sequence of pseudorandom bytes determined by `g1`.
fn xor_with_hash(g1: G1, bytes: &[u8]) -> Vec<u8> {
    let digest = sha3_256(g1.into_affine().into_compressed().as_ref());
    let rng = ChaChaRng::from_seed(digest);
    let xor = |(a, b): (u8, &u8)| a ^ b;
    rng.sample_iter(&Standard).zip(bytes).map(xor).collect()
}

/// Given a list of `t + 1` samples `(i - 1, f(i) * g)` for a polynomial `f` of degree `t`, and a
/// group generator `g`, returns `f(0) * g`.
fn interpolate<C, B, T, I>(t: usize, items: I) -> Result<C>
where
    C: CurveProjective<Scalar = Fr>,
    I: IntoIterator<Item = (T, B)>,
    T: IntoFr,
    B: Borrow<C>,
{
    let samples: Vec<_> = items
        .into_iter()
        .take(t + 1)
        .map(|(i, sample)| (into_fr_plus_1(i), sample))
        .collect();
    if samples.len() <= t {
        return Err(Error::NotEnoughShares);
    }

    if t == 0 {
        return Ok(*samples[0].1.borrow());
    }

    // Compute the products `x_prod[i]` of all but the `i`-th entry.
    let mut x_prod: Vec<C::Scalar> = Vec::with_capacity(t);
    let mut tmp = C::Scalar::one();
    x_prod.push(tmp);
    for (x, _) in samples.iter().take(t) {
        tmp.mul_assign(x);
        x_prod.push(tmp);
    }
    tmp = C::Scalar::one();
    for (i, (x, _)) in samples[1..].iter().enumerate().rev() {
        tmp.mul_assign(x);
        x_prod[i].mul_assign(&tmp);
    }

    let mut result = C::zero();
    for (mut l0, (x, sample)) in x_prod.into_iter().zip(&samples) {
        // Compute the value at 0 of the Lagrange polynomial that is `0` at the other data
        // points but `1` at `x`.
        let mut denom = C::Scalar::one();
        for (x0, _) in samples.iter().filter(|(x0, _)| x0 != x) {
            let mut diff = *x0;
            diff.sub_assign(x);
            denom.mul_assign(&diff);
        }
        l0.mul_assign(&denom.inverse().ok_or(Error::DuplicateEntry)?);
        result.add_assign(&sample.borrow().into_affine().mul(l0));
    }
    Ok(result)
}

fn into_fr_plus_1<I: IntoFr>(x: I) -> Fr {
    let mut result = Fr::one();
    result.add_assign(&x.into_fr());
    result
}

/// Type that implements `Debug` printing three dots. This can be used to hide the contents of a
/// field in a `Debug` implementation.
struct DebugDots;

impl fmt::Debug for DebugDots {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "...")
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    use std::collections::BTreeMap;

    use rand::{self, distributions::Standard, random, Rng};

    #[test]
    fn test_interpolate() {
        let mut rng = rand::thread_rng();
        for deg in 0..5 {
            println!("deg = {}", deg);
            let comm = Poly::random(deg, &mut rng).commitment();
            let mut values = Vec::new();
            let mut x = 0;
            for _ in 0..=deg {
                x += rng.gen_range(1, 5);
                values.push((x - 1, comm.evaluate(x)));
            }
            let actual = interpolate(deg, values).expect("wrong number of values");
            assert_eq!(comm.evaluate(0), actual);
        }
    }

    #[test]
    fn test_simple_sig() {
        let sk0 = SecretKey::random();
        let sk1 = SecretKey::random();
        let pk0 = sk0.public_key();
        let msg0 = b"Real news";
        let msg1 = b"Fake news";
        assert!(pk0.verify(&sk0.sign(msg0), msg0));
        assert!(!pk0.verify(&sk1.sign(msg0), msg0)); // Wrong key.
        assert!(!pk0.verify(&sk0.sign(msg1), msg0)); // Wrong message.
    }

    #[test]
    fn test_threshold_sig() {
        let mut rng = rand::thread_rng();
        let sk_set = SecretKeySet::random(3, &mut rng);
        let pk_set = sk_set.public_keys();
        let pk_master = pk_set.public_key();

        // Make sure the keys are different, and the first coefficient is the main key.
        assert_ne!(pk_master, pk_set.public_key_share(0).0);
        assert_ne!(pk_master, pk_set.public_key_share(1).0);
        assert_ne!(pk_master, pk_set.public_key_share(2).0);

        // Make sure we don't hand out the main secret key to anyone.
        let sk_master = sk_set.secret_key();
        let sk_share_0 = sk_set.secret_key_share(0).0;
        let sk_share_1 = sk_set.secret_key_share(1).0;
        let sk_share_2 = sk_set.secret_key_share(2).0;
        assert_ne!(sk_master, sk_share_0);
        assert_ne!(sk_master, sk_share_1);
        assert_ne!(sk_master, sk_share_2);

        let msg = "Totally real news";

        // The threshold is 3, so 4 signature shares will suffice to recreate the share.
        // note: this tests passing a Vec to ::combine_signatures (instead of BTreeMap)
        let sigs: Vec<(_, _)> = [5, 8, 7, 10]
            .iter()
            .map(|&i| {
                let sig = sk_set.secret_key_share(i).sign(msg);
                (i, sig)
            })
            .collect();

        // Each of the shares is a valid signature matching its public key share.
        for (i, sig) in &sigs {
            assert!(pk_set.public_key_share(*i).verify(sig, msg));
        }

        // Combined, they produce a signature matching the main public key.
        let sig = pk_set.combine_signatures(sigs).expect("signatures match");
        assert!(pk_set.public_key().verify(&sig, msg));

        // A different set of signatories produces the same signature.
        let sigs2: BTreeMap<_, _> = [42, 43, 44, 45]
            .iter()
            .map(|&i| {
                let sig = sk_set.secret_key_share(i).sign(msg);
                (i, sig)
            })
            .collect();
        let sig2 = pk_set.combine_signatures(&sigs2).expect("signatures match");
        assert_eq!(sig, sig2);
    }

    #[test]
    fn test_simple_enc() {
        let sk_bob: SecretKey = random();
        let sk_eve: SecretKey = random();
        let pk_bob = sk_bob.public_key();
        let msg = b"Muffins in the canteen today! Don't tell Eve!";
        let ciphertext = pk_bob.encrypt(&msg[..]);
        assert!(ciphertext.verify());

        // Bob can decrypt the message.
        let decrypted = sk_bob.decrypt(&ciphertext).expect("invalid ciphertext");
        assert_eq!(msg[..], decrypted[..]);

        // Eve can't.
        let decrypted_eve = sk_eve.decrypt(&ciphertext).expect("invalid ciphertext");
        assert_ne!(msg[..], decrypted_eve[..]);

        // Eve tries to trick Bob into decrypting `msg` xor `v`, but it doesn't validate.
        let Ciphertext(u, v, w) = ciphertext;
        let fake_ciphertext = Ciphertext(u, vec![0; v.len()], w);
        assert!(!fake_ciphertext.verify());
        assert_eq!(None, sk_bob.decrypt(&fake_ciphertext));
    }

    #[test]
    fn test_random_extreme_thresholds() {
        let mut rng = rand::thread_rng();
        let sks = SecretKeySet::random(0, &mut rng);
        assert_eq!(0, sks.threshold());
        assert!(SecretKeySet::try_random(usize::max_value(), &mut rng).is_err());
    }

    #[test]
    fn test_threshold_enc() {
        let mut rng = rand::thread_rng();
        let sk_set = SecretKeySet::random(3, &mut rng);
        let pk_set = sk_set.public_keys();
        let msg = b"Totally real news";
        let ciphertext = pk_set.public_key().encrypt(&msg[..]);

        // The threshold is 3, so 4 signature shares will suffice to decrypt.
        let shares: BTreeMap<_, _> = [5, 8, 7, 10]
            .iter()
            .map(|&i| {
                let dec_share = sk_set
                    .secret_key_share(i)
                    .decrypt_share(&ciphertext)
                    .expect("ciphertext is invalid");
                (i, dec_share)
            })
            .collect();

        // Each of the shares is valid matching its public key share.
        for (i, share) in &shares {
            pk_set
                .public_key_share(*i)
                .verify_decryption_share(share, &ciphertext);
        }

        // Combined, they can decrypt the message.
        let decrypted = pk_set
            .decrypt(&shares, &ciphertext)
            .expect("decryption shares match");
        assert_eq!(msg[..], decrypted[..]);
    }

    /// Some basic sanity checks for the `hash_g2` function.
    #[test]
    fn test_hash_g2() {
        let rng = rand::thread_rng();
        let msg: Vec<u8> = rng.sample_iter(&Standard).take(1000).collect();
        let msg_end0: Vec<u8> = msg.iter().chain(b"end0").cloned().collect();
        let msg_end1: Vec<u8> = msg.iter().chain(b"end1").cloned().collect();

        assert_eq!(hash_g2(&msg), hash_g2(&msg));
        assert_ne!(hash_g2(&msg), hash_g2(&msg_end0));
        assert_ne!(hash_g2(&msg_end0), hash_g2(&msg_end1));
    }

    /// Some basic sanity checks for the `hash_g1_g2` function.
    #[test]
    fn test_hash_g1_g2() {
        let mut rng = rand::thread_rng();
        let msg: Vec<u8> = rng.sample_iter(&Standard).take(1000).collect();
        let msg_end0: Vec<u8> = msg.iter().chain(b"end0").cloned().collect();
        let msg_end1: Vec<u8> = msg.iter().chain(b"end1").cloned().collect();
        let g0 = G1::random(&mut rng);
        let g1 = G1::random(&mut rng);

        assert_eq!(hash_g1_g2(g0, &msg), hash_g1_g2(g0, &msg));
        assert_ne!(hash_g1_g2(g0, &msg), hash_g1_g2(g0, &msg_end0));
        assert_ne!(hash_g1_g2(g0, &msg_end0), hash_g1_g2(g0, &msg_end1));
        assert_ne!(hash_g1_g2(g0, &msg), hash_g1_g2(g1, &msg));
    }

    /// Some basic sanity checks for the `hash_bytes` function.
    #[test]
    fn test_xor_with_hash() {
        let mut rng = rand::thread_rng();
        let g0 = G1::random(&mut rng);
        let g1 = G1::random(&mut rng);
        let xwh = xor_with_hash;
        assert_eq!(xwh(g0, &[0; 5]), xwh(g0, &[0; 5]));
        assert_ne!(xwh(g0, &[0; 5]), xwh(g1, &[0; 5]));
        assert_eq!(5, xwh(g0, &[0; 5]).len());
        assert_eq!(6, xwh(g0, &[0; 6]).len());
        assert_eq!(20, xwh(g0, &[0; 20]).len());
    }

    #[test]
    fn test_from_to_bytes() {
        let sk: SecretKey = random();
        let sig = sk.sign("Please sign here: ______");
        let pk = sk.public_key();
        let pk2 = PublicKey::from_bytes(pk.to_bytes()).expect("invalid pk representation");
        assert_eq!(pk, pk2);
        let sig2 = Signature::from_bytes(sig.to_bytes()).expect("invalid sig representation");
        assert_eq!(sig, sig2);
        let cipher = sk.public_key().encrypt(b"secret msg");
        let cipher2 =
            Ciphertext::from_bytes(&cipher.to_bytes()).expect("invalid cipher representation");
        assert_eq!(cipher, cipher2);
    }

    #[test]
    fn test_serde() {
        let sk = SecretKey::random();
        let sig = sk.sign("Please sign here: ______");
        let pk = sk.public_key();
        let ser_pk = bincode::serialize(&pk).expect("serialize public key");
        let deser_pk = bincode::deserialize(&ser_pk).expect("deserialize public key");
        assert_eq!(ser_pk.len(), PK_SIZE);
        assert_eq!(pk, deser_pk);
        let ser_sig = bincode::serialize(&sig).expect("serialize signature");
        let deser_sig = bincode::deserialize(&ser_sig).expect("deserialize signature");
        assert_eq!(ser_sig.len(), SIG_SIZE);
        assert_eq!(sig, deser_sig);
    }

    #[cfg(feature = "codec-support")]
    #[test]
    fn test_codec() {
        use codec::{Decode, Encode};
        use rand::distributions::{Distribution, Standard};
        use rand::thread_rng;

        macro_rules! assert_codec {
            ($obj:expr, $type:ty) => {
                let encoded: Vec<u8> = $obj.encode();
                let decoded: $type = <$type>::decode(&mut &encoded[..]).unwrap();
                assert_eq!(decoded, $obj.clone());
            };
        }

        let sk = SecretKey::random();
        let pk = sk.public_key();
        assert_codec!(pk, PublicKey);

        let pk_share = PublicKeyShare(pk);
        assert_codec!(pk_share, PublicKeyShare);

        let sig = sk.sign(b"this is a test");
        assert_codec!(sig, Signature);

        let sig_share = SignatureShare(sig);
        assert_codec!(sig_share, SignatureShare);

        let cipher_text = pk.encrypt(b"cipher text");
        assert_codec!(cipher_text, Ciphertext);

        let dec_share: DecryptionShare = Standard.sample(&mut thread_rng());
        assert_codec!(dec_share, DecryptionShare);

        let sk_set = SecretKeySet::random(3, &mut thread_rng());
        let pk_set = sk_set.public_keys();
        assert_codec!(pk_set, PublicKeySet);
    }

    #[test]
    fn test_size() {
        assert_eq!(<G1Affine as CurveAffine>::Compressed::size(), PK_SIZE);
        assert_eq!(<G2Affine as CurveAffine>::Compressed::size(), SIG_SIZE);
    }

    #[test]
    fn test_zeroize() {
        let zero_sk = SecretKey::from_mut(&mut Fr::zero());

        let mut sk = SecretKey::random();
        assert_ne!(zero_sk, sk);

        sk.zeroize();
        assert_eq!(zero_sk, sk);
    }

    #[test]
    fn test_rng_seed() {
        let sk1 = SecretKey::random();
        let sk2 = SecretKey::random();

        assert_ne!(sk1, sk2);
        let mut seed = [0u8; 32];
        rand::thread_rng().fill_bytes(&mut seed);

        let mut rng = ChaChaRng::from_seed(seed);
        let sk3: SecretKey = rng.sample(Standard);

        let mut rng = ChaChaRng::from_seed(seed);
        let sk4: SecretKey = rng.sample(Standard);
        assert_eq!(sk3, sk4);
    }

    #[test]
    fn test_interoperability() {
        // This test only pases if fn sign and fn verify are using the BLST code
        // https://github.com/Chia-Network/bls-signatures/blob/ee71adc0efeae3a7487cf0662b7bee3825752a29/src/test.cpp#L249-L260
        let skbytes = [
            74, 53, 59, 227, 218, 192, 145, 160, 167, 230, 64, 98, 3, 114, 245, 225, 226, 228, 64,
            23, 23, 193, 231, 156, 172, 111, 251, 168, 246, 144, 86, 4,
        ];
        let pkbytes = [
            133, 105, 95, 203, 192, 108, 196, 196, 201, 69, 31, 77, 206, 33, 203, 248, 222, 62, 90,
            19, 191, 72, 244, 76, 219, 177, 142, 32, 56, 186, 123, 139, 177, 99, 45, 121, 17, 239,
            30, 46, 8, 116, 155, 221, 191, 22, 83, 82,
        ];
        let msgbytes = [7, 8, 9];
        let sigbytes = [
            184, 250, 166, 214, 163, 136, 28, 159, 219, 173, 128, 59, 23, 13, 112, 202, 92, 191,
            30, 107, 165, 165, 134, 38, 45, 243, 104, 199, 90, 205, 29, 31, 250, 58, 182, 238, 33,
            199, 31, 132, 68, 148, 101, 152, 120, 245, 235, 35, 12, 149, 141, 213, 118, 176, 139,
            133, 100, 170, 210, 238, 9, 146, 232, 90, 30, 86, 95, 41, 156, 213, 58, 40, 93, 231,
            41, 147, 127, 112, 220, 23, 106, 31, 1, 67, 33, 41, 187, 43, 148, 211, 213, 3, 31, 128,
            101, 161,
        ];
        // no SecretKey::from_bytes method, so use bincode which requires
        // little endian bytes.
        let mut leskbytes = skbytes;
        leskbytes.reverse();
        let sk: SecretKey = bincode::deserialize(&leskbytes).unwrap();
        let pk = sk.public_key();
        // secret key gives same public key
        assert_eq!(pkbytes, pk.to_bytes());
        // signature matches test vector
        let sig = sk.sign(&msgbytes);
        assert_eq!(sigbytes, sig.to_bytes());
        // signature can be verified
        let is_valid = pk.verify(&sig, msgbytes);
        assert!(is_valid);
    }

    #[test]
    fn test_sk_to_from_bytes() {
        use crate::serde_impl::SerdeSecret;
        let sk = SecretKey::random();
        // bincode is little endian, so must reverse to get big endian
        let mut bincode_bytes = bincode::serialize(&SerdeSecret(&sk)).unwrap();
        bincode_bytes.reverse();
        // sk.to_bytes() is big endian
        let sk_be_bytes = sk.to_bytes();
        assert_eq!(bincode_bytes, sk_be_bytes);
        // from bytes gives original secret key
        let restored_sk = SecretKey::from_bytes(sk_be_bytes).expect("invalid sk bytes");
        assert_eq!(sk, restored_sk);
    }

    #[test]
    fn vectors_sk_to_from_bytes() {
        // from https://github.com/Chia-Network/bls-signatures/blob/ee71adc0efeae3a7487cf0662b7bee3825752a29/src/test.cpp#L249
        let sk_hex = "4a353be3dac091a0a7e640620372f5e1e2e4401717c1e79cac6ffba8f6905604";
        let pk_hex = "85695fcbc06cc4c4c9451f4dce21cbf8de3e5a13bf48f44cdbb18e2038ba7b8bb1632d7911ef1e2e08749bddbf165352";
        let sk_vec = hex::decode(sk_hex).unwrap();
        let mut sk_bytes = [0u8; SK_SIZE];
        sk_bytes[..SK_SIZE].clone_from_slice(&sk_vec[..SK_SIZE]);
        let sk = SecretKey::from_bytes(sk_bytes).expect("invalid sk bytes");
        let pk = sk.public_key();
        let pk_bytes = pk.to_bytes();
        let pk_to_hex = &format!("{}", HexFmt(&pk_bytes));
        assert_eq!(pk_to_hex, pk_hex);
    }

    #[test]
    fn test_public_key_set_to_from_bytes_distinctive_properties() {
        let threshold = 3;
        let mut rng = rand::thread_rng();
        let sk_set = SecretKeySet::random(threshold, &mut rng);
        let pk_set = sk_set.public_keys();
        // length is fixed to (threshold + 1) * 48
        let pk_set_bytes = pk_set.to_bytes();
        assert_eq!(pk_set_bytes.len(), (threshold + 1) * PK_SIZE);
        // the first bytes of the public key set match the public key
        let pk = pk_set.public_key();
        let pk_bytes = pk.to_bytes();
        let pk_bytes_size = pk_bytes.len();
        for i in 0..pk_bytes_size {
            assert_eq!(pk_bytes[i], pk_set_bytes[i]);
        }
        // from bytes gives original pk set
        let restored_pk_set =
            PublicKeySet::from_bytes(pk_set_bytes).expect("invalid public key set bytes");
        assert_eq!(pk_set, restored_pk_set);
    }

    #[test]
    fn test_public_key_set_to_from_bytes_threshold_0() {
        // for threshold 0 the public key set matches the public key and all
        // public key shares
        let threshold = 0;
        let mut rng = rand::thread_rng();
        let sk_set = SecretKeySet::random(threshold, &mut rng);
        let pk_set = sk_set.public_keys();
        let pk_set_bytes = pk_set.to_bytes();
        let pk = pk_set.public_key();
        let pk_bytes = pk.to_bytes();
        assert_eq!(pk_set_bytes, pk_bytes);
        let pk_share_0 = pk_set.public_key_share(0);
        let pk_share_0_bytes = pk_share_0.to_bytes();
        assert_eq!(pk_set_bytes, pk_share_0_bytes);
        let pk_share_1 = pk_set.public_key_share(1);
        let pk_share_1_bytes = pk_share_1.to_bytes();
        assert_eq!(pk_set_bytes, pk_share_1_bytes);
    }

    #[test]
    fn vectors_public_key_set_to_from_bytes() {
        let vectors = vec![
            // Plain old Public Key Set
            vec![
                // public key set
                "b89f8983d73b6ef75f07f90bc5a58d501b9204f9f304fc9354a66271944b25460845b22d3759c2c8889be552ae23617096b5bfcf90273c61ad102f97c66155de2d9eee3b803e83118095d8b0955f177b105371481e8d9b18d8f610a05b94c1cf",
                // public key
                "b89f8983d73b6ef75f07f90bc5a58d501b9204f9f304fc9354a66271944b25460845b22d3759c2c8889be552ae236170",
                // public key share 0
                "a0f7640853a86e68ef7ac705b6f5bdd15bb4656dbe9578b24b2cceb1ee8576646de140a417eb687e7dbe1a1bfff4f5cd",
                // public key share 1
                "8c2e9d7c02fb3ec87548cc2456904899b9d100c798ae2e08461dc8471b907664e38af99701adaaf6b604367ce70a72ce",
                // public key share 2
                "851d512dfbc25d2200982d70b107dad84bfef82d6f9fe9ce9c7bef7917755e3b2e504324ba2b7ed233b77f9c825188e8",
            ],
            // Trailing zero in the Public Key Set
            // This will fail any implementation with little endian shenaigans
            vec![
                "9455aa0495c1b0706507dd09531c71940e4cfeca1d5533dc096f4d5f045ba02f362790486e44e9d4a204938c65bd45208d19e0f29c53f6a1491c5aa24c4095759b57acccf1b801e5ea0270dac3c1e0d24a1058cbc4d8a3f185c1e87cefdaaa00",
                "9455aa0495c1b0706507dd09531c71940e4cfeca1d5533dc096f4d5f045ba02f362790486e44e9d4a204938c65bd4520",
                "881ffed3cc7a51355ffb1a99928ddfa16fb739ee7d4194e94e614ff0144d9978270cd2ffc0d2f95a664d450c4a7890c5",
                "b06db35fe602cbe651667aef2a77f53af1e8a4abb8764cec021d0aeac77728a5accc519bcfb07b609874fa76bd36452c",
                "856bb79f082919dfe2a4601765c2d6094ff122f494db7593a3eab2340136a50d7ad8ba20b09367c6c2b87a543cfee014",
            ],
            // Trailing zero in the Public Key
            vec![
                "afddb9cb9b636f176fd3e4d66ebf1d5e1b8feb0e43723e10fb4e4bc00bbbc3d29d6f6c8d7beca65fee2c89bd54e79e00a151ba6cea3fbe4b84bf14e99ef83edc1a805305ddeb998b93cb30c965abac057bd2dbfd73a00277638ec98da02b770c",
                "afddb9cb9b636f176fd3e4d66ebf1d5e1b8feb0e43723e10fb4e4bc00bbbc3d29d6f6c8d7beca65fee2c89bd54e79e00",
                "af121474a59ff060cb6b7862431cfc4ff6188c88120e0f686c790401d716ea6cd46a08201fcf88a0e96e324fcf08a25f",
                "b7ce6b16cfed4d94e95478902e64920bf95e84848bc471b569c547a4d59265be3865f6f1de40720045446ad9cd15b5ba",
                "a08b1043e38862e9442574d0afd1ed47c197d1dec2f0600edfedbb9e45cfac07095e15ddc8c6b91d0657272bb990d3e7",
            ],
            // Trailing zero in a Public Key Share
            vec![
                "8a4f064135d1a26d71b77f8d3f3a611e8f4de6489afb5b99e567aa6e93ee6a67f1e8fdde8105080382c822a52cf989ad833106149091a207a0e0fd3353e1a2c6dbe0147538a35b562e9b779252e8707c3cd98759a18a1c55cc7eb0f9f8440664",
                "8a4f064135d1a26d71b77f8d3f3a611e8f4de6489afb5b99e567aa6e93ee6a67f1e8fdde8105080382c822a52cf989ad",
                "907ec2454a752d18a172cb7c99d5f7952a558bdbd2675c107aeb84f0281f39cf72022e3ec26d05e86809ee0e2ebe352a",
                "8bd292ce33c1bcec80ce6cf029aeac292d9563d6e718fdcd8573188f88364442f2a8d51f1124b69c48fe5adc77512800",
                "aa4f3dbd12d6184bb5426187e46d20df9c160b4c5f9028b73fc904c988405e8655f1eaf979992a163d03d601f39efce1",
            ]
        ];
        for vector in vectors {
            // read PublicKeyShare from hex
            let pks_bytes = hex::decode(vector[0]).unwrap();
            let pks = PublicKeySet::from_bytes(pks_bytes).expect("Invalid public key set bytes");
            // check public key
            let pk = pks.public_key();
            let pk_hex = &format!("{}", HexFmt(&pk.to_bytes()));
            assert_eq!(pk_hex, vector[1]);
            // check public key shares
            let pk_share_0 = pks.public_key_share(0);
            let pk_share_0_hex = &format!("{}", HexFmt(&pk_share_0.to_bytes()));
            assert_eq!(pk_share_0_hex, vector[2]);
            let pk_share_1 = pks.public_key_share(1);
            let pk_share_1_hex = &format!("{}", HexFmt(&pk_share_1.to_bytes()));
            assert_eq!(pk_share_1_hex, vector[3]);
            let pk_share_2 = pks.public_key_share(2);
            let pk_share_2_hex = &format!("{}", HexFmt(&pk_share_2.to_bytes()));
            assert_eq!(pk_share_2_hex, vector[4]);
        }
    }

    #[test]
    fn test_secret_key_set_to_from_bytes_distictive_properties() {
        let threshold = 3;
        let mut rng = rand::thread_rng();
        let poly = Poly::random(threshold, &mut rng);
        let sk_set = SecretKeySet::from(poly);
        // length is fixed to (threshold + 1) * 32
        let sk_set_bytes = sk_set.to_bytes();
        assert_eq!(sk_set_bytes.len(), (threshold + 1) * SK_SIZE);
        // the first bytes of the secret key set match the secret key
        let sk = sk_set.secret_key();
        let sk_bytes = sk.to_bytes();
        let sk_bytes_size = sk_bytes.len();
        for i in 0..sk_bytes_size {
            assert_eq!(sk_bytes[i], sk_set_bytes[i]);
        }
        // from bytes gives original sk set
        let restored_sk_set =
            SecretKeySet::from_bytes(sk_set_bytes).expect("invalid secret key set bytes");
        // cannot assert_eq! for SecretKeySet so test the secret_key
        // TODO decide if testing the secret key is adequate for testing the
        // entire restored secret key set
        let restored_sk = restored_sk_set.secret_key();
        assert_eq!(sk, restored_sk);
    }

    #[test]
    fn test_secret_key_set_to_from_bytes_threshold_0() {
        // for threshold 0 the secret key set matches the secret key and all
        // secret key shares
        let threshold = 0;
        let mut rng = rand::thread_rng();
        let sk_set = SecretKeySet::random(threshold, &mut rng);
        let sk_set_bytes = sk_set.to_bytes();
        let sk = sk_set.secret_key();
        let sk_bytes = sk.to_bytes();
        assert_eq!(sk_set_bytes, sk_bytes);
        let sk_share_0 = sk_set.secret_key_share(0);
        let sk_share_0_bytes = sk_share_0.to_bytes();
        assert_eq!(sk_set_bytes, sk_share_0_bytes);
        let sk_share_1 = sk_set.secret_key_share(1);
        let sk_share_1_bytes = sk_share_1.to_bytes();
        assert_eq!(sk_set_bytes, sk_share_1_bytes);
    }

    #[test]
    fn vectors_secret_key_set_to_from_bytes() {
        let vectors = vec![
            // Plain old Secret Key Set
            // Sourced from Poly::reveal and SecretKey::reveal
            vec![
                // secret key set
                "474da5f155b0580b6ffcd28b62973226883bfc75658a06c2592175448221f68f64681c46c8de0e28f0666b6a849463e07a8a353bbd4b01457c0aeeb6e7dd1fa6",
                // secret key
                "474da5f155b0580b6ffcd28b62973226883bfc75658a06c2592175448221f68f",
                // secret key share 0
                "37c81ae4f4f0e8ec2d2965eddd89be01af088dae22d6ac08d52c63fc69ff1634",
                // secret key share 1
                "28428fd8943179ccea55f950587c49dcd5d51ee6e023514f513752b451dc35d9",
                // secret key share 2
                "18bd04cc33720aada7828cb2d36ed5b7fca1b01f9d6ff695cd42416c39b9557e",
            ],
            // Leading byte of Secret Key Set is zero
            // Also covers the Secret Key with a leading zero
            // This will fail for implementations with incorrect padding
            vec![
                "004e7590e4a4a97685f4d9f2c10cd8b71c88fead21f701701ddb2ee9c2d2047f015ea5a4ffc5ae4830f5dae1d0b3fed09b9bbebb983c1fc7d79b351361ba075a",
                "004e7590e4a4a97685f4d9f2c10cd8b71c88fead21f701701ddb2ee9c2d2047f",
                "01ad1b35e46a57beb6eab4d491c0d787b824bd68ba332137f57663fd248c0bd9",
                "030bc0dae4300606e7e08fb66274d65853c07c24526f40ffcd11991086461333",
                "046a667fe3f5b44f18d66a983328d528ef5c3adfeaab60c7a4acce23e8001a8d",
            ],
            // Leading byte of Secret Key Share is zero
            vec![
                "1c838171bcbb0c20e3f259cadcba86e611eb4587f069a6dcd5ee46f186e37039579311c4b4d7d016c3cae22fad69c8b8f5ce17ac826c8fefd6b38b746dd83cf8",
                "1c838171bcbb0c20e3f259cadcba86e611eb4587f069a6dcd5ee46f186e37039",
                "0028ebe347f55eef748363f280827799b3fbb93172d7dacdaca1d266f4bbad30",
                "57bbfda7fccd2f06384e46222dec4052a9c9d0ddf5446abd83555ddb6293ea28",
                "3b616819880781d4c8df5049d1b431064bda448777b29eae5a08e950d06c271f",
            ],
        ];
        for vector in vectors {
            // read SecretKeyShare from hex
            let sks_bytes = hex::decode(vector[0]).unwrap();
            let sks = SecretKeySet::from_bytes(sks_bytes).expect("invalid secret key set bytes");
            // check secret key
            let sk = sks.secret_key();
            let sk_hex = &format!("{}", HexFmt(&sk.to_bytes()));
            assert_eq!(sk_hex, vector[1]);
            // check secret key shares
            let sk_share_0 = sks.secret_key_share(0);
            let sk_share_0_hex = &format!("{}", HexFmt(&sk_share_0.to_bytes()));
            assert_eq!(sk_share_0_hex, vector[2]);
            let sk_share_1 = sks.secret_key_share(1);
            let sk_share_1_hex = &format!("{}", HexFmt(&sk_share_1.to_bytes()));
            assert_eq!(sk_share_1_hex, vector[3]);
            let sk_share_2 = sks.secret_key_share(2);
            let sk_share_2_hex = &format!("{}", HexFmt(&sk_share_2.to_bytes()));
            assert_eq!(sk_share_2_hex, vector[4]);
        }
    }

    #[test]
    fn test_decryption_share_to_from_bytes() {
        let mut rng = rand::thread_rng();
        let sk_set = SecretKeySet::random(3, &mut rng);
        let pk_set = sk_set.public_keys();
        let msg = b"Totally real news";
        let ciphertext = pk_set.public_key().encrypt(&msg[..]);
        let dec_share = sk_set
            .secret_key_share(8)
            .decrypt_share(&ciphertext)
            .expect("ciphertext is invalid");
        let dec_share_bytes = dec_share.to_bytes();
        let restored_dec_share =
            DecryptionShare::from_bytes(dec_share_bytes).expect("invalid decryption share bytes");
        assert_eq!(dec_share, restored_dec_share);
    }

    #[test]
    fn test_derive_child_secret_key() {
        let sk = SecretKey::random();
        // derivation index 0
        let child0 = sk.derive_child(&[0]);
        assert!(child0 != sk);
        // derivation index 00
        let child00 = sk.derive_child(&[0, 0]);
        assert!(child00 != sk);
        assert!(child00 != child0);
        // derivation index 1
        let child1 = sk.derive_child(&[1]);
        assert!(child1 != sk);
        assert!(child1 != child0);
        // derivation index 2
        let child2 = sk.derive_child(&[2]);
        assert!(child2 != sk);
        assert!(child2 != child0);
        assert!(child2 != child1);
        // derivation index 3
        let child3 = sk.derive_child(&[3]);
        assert!(child3 != sk);
        assert!(child3 != child0);
        assert!(child3 != child0);
        assert!(child3 != child1);
        assert!(child3 != child2);
        // very large derivation index can be used, eg 100 bytes
        let index100b = [3u8; 100];
        let child100b = sk.derive_child(&index100b);
        assert!(child100b != sk);
    }

    #[test]
    fn test_derive_child_public_key() {
        let sk = SecretKey::random();
        let pk = sk.public_key();
        // the derived keypair is a match
        let child_sk = sk.derive_child(&[0]);
        let child_pk = pk.derive_child(&[0]);
        assert_eq!(child_pk, child_sk.public_key());
    }

    #[test]
    fn test_derivation_index_into_fr() {
        // index 0 does not give Fr::zero
        let fr_from_0 = derivation_index_into_fr(&[0]);
        assert!(fr_from_0 != Fr::zero());
        // index 1 does not give Fr::one
        let fr_from_1 = derivation_index_into_fr(&[1]);
        assert!(fr_from_1 != Fr::one());
        // index > q gives valid Fr that isn't Fr::MAX
        // the check relies on the fact Fr::MAX + 1 = 0
        let mut fr_from_2pow256 = derivation_index_into_fr(&[255u8; 32]);
        fr_from_2pow256.add_assign(&Fr::one());
        assert!(fr_from_2pow256 != Fr::zero());
    }

    #[test]
    fn test_derive_child_key_vectors() {
        let vectors = vec![
            // Plain old derivation
            vec![
                // secret key
                "474da5f155b0580b6ffcd28b62973226883bfc75658a06c2592175448221f68f",
                // public key
                "ac378101f72ddf89998b3b20f9498bec1443fb095bbdaa40ad8e0cbc1fe73a147e304a14cce88bc4bd23da1e45eb3742",
                // random index
                "57cb1459985906a9c00036f0b1d700b52a4dc25b3e0ff3808dd2c9fa6ca6ba87",
                // child secret key at random index
                "4039a5958f0a10baa1d1f0d5d7e06435a126744e8b656289e74d74241492df89",
                // child public key at random index
                "b46666bbe6f6315df6cacd8200566a977d1875a09b233b0ea60ecd8ee4ffda6f2e1d2cd28665b60f48682f8d14a95a04",
            ],
            vec![
                // secret key
                "0000000000000000000000000000000000000000000000000000000000000003",
                // public key
                "89ece308f9d1f0131765212deca99697b112d61f9be9a5f1f3780a51335b3ff981747a0b2ca2179b96d2c0c9024e5224",
                // index 0
                "00",
                // child secret key at index 0
                "46b9a6b0b09523de44c2df70650e93320ec9d252c89b7a9eedcebacc0b96ad7a",
                // child public key at index 0
                "813695785a144e84c48c2a5644772514b6a58503f675f9c77ddfb7513eeb44888031f3ffe6b907a7f3889817a0de3abe",
                // index 1
                "01",
                // child secret key at index 1
                "633a4afa473971245620d27dc5778102d000fff80fa15ce06e74e1f610a50493",
                // child public key at index 1
                "8fd67eac24b4673a00000f57d40e10852eef9fda2800dff003536e3042a6ac5973f0709776c6c93191df4f0d7daf7e46",
                // index 2
                "02",
                // child secret key at index 2
                "2cc4bf8dd81c619e41146c963e00a245c6cf00163c2932132908f76edf539c7f",
                // child public key at index 2
                "8ab99d21622d98ad8bea68c5db881298f317fac691db1ae1eef191407107978338383ef8408fca0743997d040dab27c1",
                // index 1 with left padding
                // different to single byte index "01"
                "0000000000000000000000000000000000000000000000000000000000000001",
                // child secret key for 1 with left padding
                "35f65c516e54a08e29f4f9996738dbfc33f5e1a22b023082ff9f01a4a507fc7c",
                // child public key for 1 with left padding
                "81a2a9a1b3c891701dba0bdbe975bb06ff20947a35519e7938da7a783b0d561694ae5a9c2ec0c0011fc899dae67e11aa",
                // index 1 with right padding
                // different to single byte index "01"
                "0100000000000000000000000000000000000000000000000000000000000000",
                // child secret key for 1 with right padding
                "49df2b6e5b2d4310f8419d8ea651c790e502884c0b9e903c65d23c2f3d522f8b",
                // child public key for 1 with right padding
                "a2479d4554fbf8bc98f206bb09de80e2790f44fa3ea8f0cb02c44116111c60da2691683b17367cbb933c27836d721206",
                // index with 17 bytes
                "0000000000000000000000000000000101",
                // child secret key for 17 bytes
                "65a44b4096fb8948d42a762c27141f58b678de54b9cba554f13e8e144f1ed889",
                // child public key for 17 bytes
                "b2a88bac72330a081500b3b27698664812039b61d6929d3ed0a4fea28a4ae35ebc72a149a8d8b2534860672b4348e7ef",
                // large index greater than q
                "fedcbafedcbafedcbafedcbafedcbafedcbafedcbafedcbafedcbafedcbafedc",
                // child secret key at large index
                "3da527e935752a7924b8b244be2b6e4b6a8ef54865ef7e1dfeae5187d1cf414d",
                // child public key at large index
                "85954d86b7028b362d43e8d8319ef529a8d69c5a4b0a9352f6d3f10d9aa9a5d44b576f14087882d6d51fd10b70e228e9",
                // index with more than 256 bits
                // note different to single byte index "00"
                "00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
                // child secret key for index more than 256 bits
                "50524fce1903b24900bd7ae12fce29d3e7cf0520f5fbaee08bc8efe9922458c0",
                // child public key for index more than 256 bits
                "a419c001ca4f8261388f0ca55a43ded57f741d2833c532450bded670dad3b0654f2c7ffa81ca9a1fa7b03639d1fd9171",
                // index with many repeated hashes (34 rounds for this index)
                "0000000028c0acd2",
                // child secret key for index with main repeated hashes
                "319e0ac479cff5cb4261e465de3736d634c583bcb5a1ac33fb0dcb1d77908268",
                // child public key for index with many repeated hashes
                "86037c3f7fbd88572bd56025444bb2a49375d2e146f9a52d8a35689fd93d04ebc62559a1441cdc7edbf39189247b9620",
                // index with child secret key leading zero
                "0000000000000017",
                // child secret key for sk leading zero
                "00dc1689706a2de1f9b84b647776f200c61de5ba2699ab4be6890d96e7870ef8",
                // child public key for sk leading zero
                "825cb1914a0b5f006d529b081c06b04f334c8c97456e83a4e61917ce6b5256dab462575b1c03a9bed913bf1c070fda0d",
                // index with child public key trailing zero
                "0000000000000152",
                // child secret key for child pk trailing zero
                "4237e4e30390f33a329107edde05130ce84e403e0f78a0ba4e5dea79289ba200",
                // child public key for child pk trailing zero
                "adb936c7a97c9c98c80b92635ce6ffaceba6620d133ddc7252bd5d11cf7c7a3aa3bbda9428f860987655820a9e940fd8",
            ],
        ];
        for vector in vectors {
            // get parent keypair
            let sk_vec = hex::decode(vector[0]).unwrap();
            let mut sk_bytes = [0u8; SK_SIZE];
            sk_bytes[..SK_SIZE].clone_from_slice(&sk_vec[..SK_SIZE]);
            let sk = SecretKey::from_bytes(sk_bytes).expect("invalid secret key bytes");
            let pk = sk.public_key();
            let pk_hex = &format!("{}", HexFmt(&pk.to_bytes()));
            assert_eq!(pk_hex, vector[1]);
            // test derivation for all the indexes
            let children = (vector.len() - 2) / 3;
            for i in 0..children {
                let v = 2 + i * 3;
                // get index
                let index = hex::decode(vector[v]).unwrap();
                // derive child secret key at this index
                let sk_child = sk.derive_child(&index);
                let sk_child_hex = &format!("{}", HexFmt(&sk_child.to_bytes()));
                assert_eq!(sk_child_hex, vector[v + 1]);
                // derive child public key at this index
                let pk_child = pk.derive_child(&index);
                let pk_child_hex = &format!("{}", HexFmt(&pk_child.to_bytes()));
                assert_eq!(pk_child_hex, vector[v + 2]);
                // confirm these keys are a pair
                assert_eq!(sk_child.public_key(), pk_child);
            }
        }
    }

    #[test]
    fn test_ciphertext_vectors() {
        let vectors = vec![
            // Plain old ciphertext
            vec![
                // secret key
                "09f82926174f2fb52fc3674822497362df34186b4cac60ab531d81ac36144b63",
                // plain text hex
                "0102030405",
                // ciphertext
                "96f6ab7884f1d1627439df210ce0c192071612a2fe212ec4bf3c70a885be007c7514dc15b769ef02f92558e862d2894e95f892f1eb4a8cfb6f05ac83adcb5b429261bc8b195830d92a59859135157b1f3394156dba1e905f29158d0eeea49faa0238bc51704cfcffdab35fb0d4ca9311bbb5b80d616be2d505d8f82a2ff4e69e756cc835b19e622f5b94457ad9c084e91de6b13d27",
            ],
            // Leading zeros and trailing
            vec![
                // secret key
                "0055555555555555555555555555555555555555555555555555555555555500",
                // plain text hex
                "00bdc600",
                // ciphertext with u and w having trailing zeros
                "b01724be1ed730f0b1713c24aa5963bff7845a56892b78b1a24152dfe48848223ea54a358c27946323ec013ee46af80088f508ef7ce6abf174f51dbfa5692adc975fa99a569860cff555b3e7f68d06dfe6dd2621643ec859a64e61cee1f9aced1569b695253936197585696cfab0b38dfd159051ec569e0d3ba1bb0d2a3dec008467810621111fb2dd92c44ef251280038164cb6",
            ],
        ];
        for vector in vectors {
            // get secret key
            let sk_vec = hex::decode(vector[0]).unwrap();
            let mut sk_bytes = [0u8; SK_SIZE];
            sk_bytes[..SK_SIZE].clone_from_slice(&sk_vec[..SK_SIZE]);
            let sk = SecretKey::from_bytes(sk_bytes).expect("invalid secret key bytes");
            // get ciphertext
            let ct_vec = hex::decode(vector[2]).unwrap();
            let ct = Ciphertext::from_bytes(&ct_vec).expect("invalid ciphertext bytes");
            // check the ciphertext is valid
            assert!(ct.verify());
            // check the decrypted ciphertext matches the original message
            let msg_vec = hex::decode(vector[1]).unwrap();
            let plaintext = sk.decrypt(&ct).expect("decryption failed");
            assert_eq!(plaintext, msg_vec);
        }
    }

    #[test]
    fn test_sk_set_derive_child() {
        let mut rng = rand::thread_rng();
        let sks = SecretKeySet::random(3, &mut rng);
        // Deriving from master is the same as deriving a set
        // and getting the master from the derived set
        let mut index = [0u8; 32];
        rng.fill_bytes(&mut index);
        let msk = sks.secret_key();
        let msk_child = msk.derive_child(&index);
        assert_ne!(msk, msk_child);
        let sks_child = sks.derive_child(&index);
        assert_ne!(sks.to_bytes(), sks_child.to_bytes());
        let sks_child_master = sks_child.secret_key();
        assert_eq!(msk_child, sks_child_master);
        // secret key shares are matching
        // sks.child(x).share(y) == sks.share(y).child(x)
        let sks_share0 = sks.secret_key_share(0);
        let sks_share0_child = sks_share0.derive_child(&index);
        let sks_child_share0 = sks_child.secret_key_share(0);
        assert_eq!(sks_share0_child, sks_child_share0);
    }

    #[test]
    fn test_pk_set_derive_child() {
        let mut rng = rand::thread_rng();
        let sks = SecretKeySet::random(3, &mut rng);
        let pks = sks.public_keys();
        // Deriving from master is the same as deriving a set
        // and getting the master from the derived set
        let mut index = [0u8; 32];
        rng.fill_bytes(&mut index);
        let mpk = pks.public_key();
        let mpk_child = mpk.derive_child(&index);
        assert_ne!(mpk, mpk_child);
        let pks_child = pks.derive_child(&index);
        assert_ne!(pks.to_bytes(), pks_child.to_bytes());
        let pks_child_master = pks_child.public_key();
        assert_eq!(mpk_child, pks_child_master);
        // public key shares are matching
        // pks.child(x).share(y) == pks.share(y).child(x)
        let pks_share0 = pks.public_key_share(0);
        let pks_share0_child = pks_share0.derive_child(&index);
        let pks_child_share0 = pks_child.public_key_share(0);
        assert_eq!(pks_share0_child, pks_child_share0);
        // derived master public key is a pair for derived master secret key
        let sks_child = sks.derive_child(&index);
        assert_eq!(sks_child.secret_key().public_key(), pks_child.public_key());
    }

    #[test]
    fn test_sk_set_child_sig() {
        // combining signatures from child keyshares produces
        // a valid signature for the child public key set
        let mut rng = rand::thread_rng();
        // The threshold is 3, so 4 signature shares will suffice to decrypt.
        let sks = SecretKeySet::random(3, &mut rng);
        let share_indexes = vec![5, 8, 7, 10];
        // all participants have the public key set and their key share.
        let pks = sks.public_keys();
        let key_shares: BTreeMap<_, _> = share_indexes
            .iter()
            .map(|&i| {
                let key_share = sks.secret_key_share(i);
                (i, key_share)
            })
            .collect();
        // all participants use the same index to derive a child keyshare
        let mut index = [0u8; 32];
        rng.fill_bytes(&mut index);
        let child_key_shares: BTreeMap<_, _> = key_shares
            .iter()
            .map(|(i, key_share)| {
                let child_key_share = key_share.derive_child(&index);
                (i, child_key_share)
            })
            .collect();
        // all participants sign a message with their child keyshare
        let msg = "Totally real news";
        let child_sig_shares: BTreeMap<_, _> = child_key_shares
            .iter()
            .map(|(i, child_key_share)| {
                let child_sig_share = child_key_share.sign(&msg);
                (i, child_sig_share)
            })
            .collect();
        // Combining the child shares creates a valid signature for the child
        // public key set.
        let pks_child = pks.derive_child(&index);
        let sig = pks_child
            .combine_signatures(&child_sig_shares)
            .expect("signatures match");
        assert!(pks_child.public_key().verify(&sig, msg));
    }
}