1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
/*! Bit Management

The `Bits` trait defines constants and free functions suitable for managing bit
storage of a primitive, and is the constraint for the storage type of a
`BitVec`.
!*/

use core::{
	cmp::Eq,
	convert::From,
	default::Default,
	fmt::{
		Binary,
		Debug,
		Display,
		LowerHex,
		UpperHex,
	},
	mem::size_of,
	ops::{
		Not,
		BitAnd,
		BitAndAssign,
		BitOrAssign,
		Shl,
		ShlAssign,
		Shr,
		ShrAssign,
	},
};

/// A trait for types that can be used as direct storage of bits.
///
/// This trait must only be implemented on unsigned integer primitives.
///
/// The dependency on `Sealed`, a crate-private trait, ensures that this trait
/// can only ever be implemented locally, and no downstream crates are able to
/// implement it on new types.
pub trait Bits:
	//  Forbid external implementation
	Sealed
	+ Binary
	+ BitAnd<Self, Output=Self>
	+ BitAndAssign<Self>
	+ BitOrAssign<Self>
	//  Permit indexing into a generic array
	+ Copy
	+ Debug
	//  `BitVec` cannot push new elements without this. (Well, it CAN, but
	//  `mem::uninitialized` is Considered Harmful.)
	+ Default
	+ Display
	//  Permit testing a value against 1 in `get()`.
	+ Eq
	//  Rust treats numeric literals in code as vaguely typed and does not make
	//  them concrete until long after trait expansion, so this enables building
	//  a concrete Self value from a numeric literal.
	+ From<u8>
	+ LowerHex
	+ Not<Output=Self>
	+ Shl<u8, Output=Self>
	+ ShlAssign<u8>
	+ Shr<u8, Output=Self>
	+ ShrAssign<u8>
	//  Allow direct access to a concrete implementor type.
	+ Sized
	+ UpperHex
{
	/// The width in bits of this type.
	const WIDTH: u8 = size_of::<Self>() as u8 * 8;

	/// The number of bits required to *index* the type. This is always
	/// log<sub>2</sub> of the type width.
	///
	/// Incidentally, this can be computed as `size_of().trailing_zeroes()` once
	/// that becomes a valid constexpr.
	const BITS: u8; // = size_of::<Self>().trailing_zeros();

	/// The bitmask to turn an arbitrary usize into the bit index. Bit indices
	/// are always stored in the lowest bits of an index value.
	const MASK: u8 = Self::WIDTH - 1;

	/// The maximum number of this type that can be held in a `BitVec`.
	const MAX_ELT: usize = core::usize::MAX >> Self::BITS;

	/// Set a specific bit in an element to a given value.
	fn set(&mut self, place: u8, value: bool) {
		assert!(place <= Self::MASK, "Index out of range");
		//  Blank the selected bit
		*self &= !(Self::from(1u8) << place);
		//  Set the selected bit
		*self |= Self::from(value as u8) << place;
	}

	/// Get a specific bit in an element.
	fn get(&self, place: u8) -> bool {
		assert!(place <= Self::MASK, "Index out of range");
		//  Shift down so the targeted bit is LSb, then blank all other bits.
		(*self >> place) & Self::from(1) == Self::from(1)
	}

	/// Counts how many bits are set.
	fn ones(&self) -> u32;

	/// Counts how many bits are unset.
	fn zeros(&self) -> u32;

	/// Splits a `usize` cursor into an (element, bit) tuple.
	///
	/// The bit component is semantic count, not bit index.
	fn split(cursor: usize) -> (usize, u8) {
		(cursor >> Self::BITS, (cursor & Self::MASK as usize) as u8)
	}

	/// Joins a `usize` element cursor and `u8` bit cursor into a single
	/// `usize` cursor.
	fn join(elt: usize, bit: u8) -> usize {
		assert!(elt <= core::usize::MAX >> Self::BITS, "Element count out of range!");
		assert!(bit <= Self::MASK, "Bit count out of range!");
		(elt << Self::BITS) | bit as usize
	}

	/// Rust doesn’t (as far as I know) have a way to render a typename at
	/// runtime, so this constant holds the typename of the primitive for
	/// printing by Debug.
	#[doc(hidden)]
	const TY: &'static str;
}

impl Bits for u8 {
	const BITS: u8 = 3;

	fn ones(&self) -> u32 {
		self.count_ones()
	}

	fn zeros(&self) -> u32 {
		self.count_zeros()
	}

	const TY: &'static str = "u8";
}

impl Bits for u16 {
	const BITS: u8 = 4;

	fn ones(&self) -> u32 {
		self.count_ones()
	}

	fn zeros(&self) -> u32 {
		self.count_zeros()
	}

	const TY: &'static str = "u16";
}

impl Bits for u32 {
	const BITS: u8 = 5;

	fn ones(&self) -> u32 {
		self.count_ones()
	}

	fn zeros(&self) -> u32 {
		self.count_zeros()
	}

	const TY: &'static str = "u32";
}

//  Boy I sure hope nobody tries to use this on middle-endian systems or where
//  the layout of a u64 is not guaranteed to be continuous between 32-bit halves
impl Bits for u64 {
	const BITS: u8 = 6;

	fn ones(&self) -> u32 {
		self.count_ones()
	}

	fn zeros(&self) -> u32 {
		self.count_zeros()
	}

	const TY: &'static str = "u64";
}

//  Do NOT implement on u128 until I can have much firmer confidence in the
//  memory layout of a u128.

/// Marker trait to seal `Bits` against downstream implementation
///
/// This trait is public in the module, so that other modules in the crate can
/// use it, but so long as it is not exported by the crate root and this module
/// is private, this trait effectively forbids downstream implementation of
/// `Bits`.
#[doc(hidden)]
pub trait Sealed {}

impl Sealed for u8 {}
impl Sealed for u16 {}
impl Sealed for u32 {}
impl Sealed for u64 {}