1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
/*! Utility macros for constructing data structures and implementing bulk types.

The only public macro is `bitvec`; this module also provides convenience macros
for code generation.
!*/

/** Construct a `BitVec` out of a literal array in source code, like `vec!`.

`bitvec!` can be invoked in a number of ways. It takes the name of a `Cursor`
implementation, the name of a `BitStore`-implementing fundamental, and zero or
more fundamentals (integer, floating-point, or boolean) which are used to build
the bits. Each fundamental literal corresponds to one bit, and is considered to
represent `1` if it is any other value than exactly zero.

`bitvec!` can be invoked with no specifiers, a `Cursor` specifier, or a `Cursor`
and a `BitStore` specifier. It cannot be invoked with a `BitStore` specifier but
no `Cursor` specifier, due to overlap in how those tokens are matched by the
macro system.

Like `vec!`, `bitvec!` supports bit lists `[0, 1, …]` and repetition markers
`[1; n]`.

# Notes

The bit list syntax `bitvec![expr, expr, expr...]` currently produces an
`&[bool]` slice of the initial pattern, which is written into the final
artifact’s static memory and may consume excessive space.

The repetition syntax `bitec![expr; count]` currently zeros its allocated buffer
before setting the first `count` bits to `expr`. This may result in a
performance penalty when using `bitvec![1; N]`, as the allocation will be zeroed
and then a subset will be set high.

This behavior is currently required to maintain compatibility with `serde`
expectations that dead bits are zero. As the `serdes` module removes those
expectations, the repetition syntax implementation may speed up.

# Examples

```rust
use bitvec::prelude::*;

bitvec![BigEndian, u8; 0, 1];
bitvec![LittleEndian, u8; 0, 1,];
bitvec![BigEndian; 0, 1];
bitvec![LittleEndian; 0, 1,];
bitvec![0, 1];
bitvec![0, 1,];
bitvec![BigEndian, u8; 1; 5];
bitvec![LittleEndian; 0; 5];
bitvec![1; 5];
```
**/
#[cfg(feature = "alloc")]
#[macro_export]
macro_rules! bitvec {
	//  bitvec![ endian , type ; 0 , 1 , … ]
	( $cursor:path , $bits:ty ; $( $val:expr ),* ) => {
		bitvec![ __bv_impl__ $cursor , $bits ; $( $val ),* ]
	};
	//  bitvec![ endian , type ; 0 , 1 , … , ]
	( $cursor:path , $bits:ty ; $( $val:expr , )* ) => {
		bitvec![ __bv_impl__ $cursor , $bits ; $( $val ),* ]
	};

	//  bitvec![ endian ; 0 , 1 , … ]
	( $cursor:path ; $( $val:expr ),* ) => {
		bitvec![ __bv_impl__ $cursor , u8 ; $( $val ),* ]
	};
	//  bitvec![ endian ; 0 , 1 , … , ]
	( $cursor:path ; $( $val:expr , )* ) => {
		bitvec![ __bv_impl__ $cursor , u8 ; $( $val ),* ]
	};

	//  bitvec![ 0 , 1 , … ]
	( $( $val:expr ),* ) => {
		bitvec![ __bv_impl__ $crate::prelude::BigEndian , u8 ; $( $val ),* ]
	};
	//  bitvec![ 0 , 1 , … , ]
	( $( $val:expr , )* ) => {
		bitvec![ __bv_impl__ $crate::prelude::BigEndian , u8 ; $( $val ),* ]
	};

	//  bitvec![ endian , type ; bit ; rep ]
	( $cursor:path , $bits:ty ; $val:expr ; $rep:expr ) => {
		bitvec![ __bv_impl__ $cursor , $bits ; $val; $rep ]
	};
	//  bitvec![ endian ; bit ; rep ]
	( $cursor:path ; $val:expr ; $rep:expr ) => {
		bitvec![ __bv_impl__ $cursor , u8 ; $val ; $rep ]
	};
	//  bitvec![ bit ; rep ]
	( $val:expr ; $rep:expr ) => {
		bitvec![ __bv_impl__ $crate::prelude::BigEndian , u8 ; $val ; $rep ]
	};

	//  GitHub issue #25 is to make this into a proc-macro that produces the
	//  correct memory slab at compile time.

	( __bv_impl__ $cursor:path , $bits:ty ; $( $val:expr ),* ) => {{
		let init: &[bool] = &[ $( $val != 0 ),* ];
		let mut bv = $crate::vec::BitVec::<$cursor, $bits>::with_capacity(
			init.len(),
		);
		bv.extend(init.iter().copied());
		bv
	}};

	//  `[$val; $rep]` can just allocate a slab of at least `$rep` bits and then
	//  use `.set_all` to force them to `$val`. This is much faster than
	//  collecting from a bitstream.

	( __bv_impl__ $cursor:path , $bits:ty ; $val:expr ; $rep:expr ) => {{
		let mut bv = $crate::vec::BitVec::<$cursor, $bits>::with_capacity($rep);
		bv.set_elements(0);
		unsafe { bv.set_len($rep); }
		let one = $val != 0;
		if one {
			bv.set_all(one);
		}
		bv
	}};
}

/** Construct a `BitBox` out of a literal array in source code, like `bitvec!`.

This has exactly the same syntax as [`bitvec!`], and in fact is a thin wrapper
around `bitvec!` that calls `.into_boxed_slice()` on the produced `BitVec` to
freeze it.

[`bitvec!`]: #macro.bitvec
**/
#[cfg(feature = "alloc")]
#[macro_export]
macro_rules! bitbox {
	//  bitbox![ endian , type ; 0 , 1 , … ]
	( $cursor:path , $bits:ty ; $( $val:expr ),* ) => {
		bitvec![ $cursor , $bits ; $( $val ),* ].into_boxed_bitslice()
	};
	//  bitbox![ endian , type ; 0 , 1 , … , ]
	( $cursor:path , $bits:ty ; $( $val:expr , )* ) => {
		bitvec![ $cursor , $bits ; $( $val ),* ].into_boxed_bitslice()
	};

	//  bitbox![ endian ; 0 , 1 , … ]
	( $cursor:path ; $( $val:expr ),* ) => {
		bitvec![ $cursor , u8 ; $( $val ),* ].into_boxed_bitslice()
	};
	//  bitbox![ endian ; 0 , 1 , … , ]
	( $cursor:path ; $( $val:expr , )* ) => {
		bitvec![ $cursor , u8 ; $( $val ),* ].into_boxed_bitslice()
	};

	//  bitbox![ 0 , 1 , … ]
	( $( $val:expr ),* ) => {
		bitvec![ $crate::prelude::BigEndian , u8 ; $( $val ),* ].into_boxed_bitslice()
	};
	//  bitbox![ 0 , 1 , … , ]
	( $( $val:expr , )* ) => {
		bitvec![ $crate::prelude::BigEndian , u8 ; $( $val ),* ].into_boxed_bitslice()
	};

	//  bitbox![ endian , type ; bit ; rep ]
	( $cursor:path , $bits:ty ; $val:expr ; $rep:expr ) => {
		bitvec![ $cursor , $bits ; $val; $rep ].into_boxed_bitslice()
	};
	//  bitbox![ endian ; bit ; rep ]
	( $cursor:path ; $val:expr ; $rep:expr ) => {
		bitvec![ $cursor , u8 ; $val ; $rep ].into_boxed_bitslice()
	};
	//  bitbox![ bit ; rep ]
	( $val:expr ; $rep:expr ) => {
		bitvec![ $crate::prelude::BigEndian , u8 ; $val ; $rep ].into_boxed_bitslice()
	};
}

#[doc(hidden)]
macro_rules! __bitslice_shift {
	( $( $t:ty ),+ ) => { $(
		#[doc(hidden)]
		impl<C, T >core::ops::ShlAssign<$t>
		for $crate::prelude::BitSlice<C,T>
		where C: $crate::cursor::Cursor, T: $crate::store::BitStore {
			fn shl_assign(&mut self, shamt: $t) {
				core::ops::ShlAssign::<usize>::shl_assign(
					self,
					shamt as usize,
				)
			}
		}

		#[doc(hidden)]
		impl<C, T> core::ops::ShrAssign<$t>
		for $crate::prelude::BitSlice<C,T>
		where C: $crate::cursor::Cursor, T: $crate::store::BitStore {
			fn shr_assign(&mut self,shamt: $t){
				core::ops::ShrAssign::<usize>::shr_assign(
					self,
					shamt as usize,
				)
			}
		}
	)+ };
}

#[cfg(feature = "alloc")]
#[doc(hidden)]
macro_rules! __bitvec_shift {
	( $( $t:ty ),+ ) => { $(
		#[doc(hidden)]
		impl<C, T> core::ops::Shl<$t>
		for $crate::vec::BitVec<C, T>
		where C: $crate::cursor::Cursor, T: $crate::store::BitStore {
			type Output = <Self as core::ops::Shl<usize>>::Output;

			fn shl(self, shamt: $t) -> Self::Output {
				core::ops::Shl::<usize>::shl(self, shamt as usize)
			}
		}

		#[doc(hidden)]
		impl<C, T> core::ops::ShlAssign<$t>
		for $crate::vec::BitVec<C, T>
		where C: $crate::cursor::Cursor, T: $crate::store::BitStore {
			fn shl_assign(&mut self, shamt: $t) {
				core::ops::ShlAssign::<usize>::shl_assign(
					self,
					shamt as usize,
				)
			}
		}

		#[doc(hidden)]
		impl<C, T> core::ops::Shr<$t>
		for $crate::vec::BitVec<C, T>
		where C: $crate::cursor::Cursor, T: $crate::store::BitStore {
			type Output = <Self as core::ops::Shr<usize>>::Output;

			fn shr(self, shamt: $t) -> Self::Output {
				core::ops::Shr::<usize>::shr(self, shamt as usize)
			}
		}

		#[doc(hidden)]
		impl<C, T> core::ops::ShrAssign<$t>
		for $crate::vec::BitVec<C, T>
		where C: $crate::cursor::Cursor, T: $crate::store::BitStore {
			fn shr_assign(&mut self, shamt: $t) {
				core::ops::ShrAssign::<usize>::shr_assign(
					self,
					shamt as usize,
				)
			}
		}
	)+ };
}

#[cfg(all(test, any(feature = "alloc", feature = "std")))]
mod tests {
	#[allow(unused_imports)]
	use crate::cursor::{
		BigEndian,
		LittleEndian,
	};

	#[test]
	fn compile_bitvec_macros() {
		bitvec![0, 1];
		bitvec![BigEndian; 0, 1];
		bitvec![LittleEndian; 0, 1];
		bitvec![BigEndian, u8; 0, 1];
		bitvec![LittleEndian, u8; 0, 1];
		bitvec![BigEndian, u16; 0, 1];
		bitvec![LittleEndian, u16; 0, 1];
		bitvec![BigEndian, u32; 0, 1];
		bitvec![LittleEndian, u32; 0, 1];
		bitvec![BigEndian, u64; 0, 1];
		bitvec![LittleEndian, u64; 0, 1];

		bitvec![1; 70];
		bitvec![BigEndian; 0; 70];
		bitvec![LittleEndian; 1; 70];
		bitvec![BigEndian, u8; 0; 70];
		bitvec![LittleEndian, u8; 1; 70];
		bitvec![BigEndian, u16; 0; 70];
		bitvec![LittleEndian, u16; 1; 70];
		bitvec![BigEndian, u32; 0; 70];
		bitvec![LittleEndian, u32; 1; 70];
		bitvec![BigEndian, u64; 0; 70];
		bitvec![LittleEndian, u64; 1; 70];
	}

	#[test]
	fn compile_bitbox_macros() {
		bitbox![0, 1];
		bitbox![BigEndian; 0, 1];
		bitbox![LittleEndian; 0, 1];
		bitbox![BigEndian, u8; 0, 1];
		bitbox![LittleEndian, u8; 0, 1];
		bitbox![BigEndian, u16; 0, 1];
		bitbox![LittleEndian, u16; 0, 1];
		bitbox![BigEndian, u32; 0, 1];
		bitbox![LittleEndian, u32; 0, 1];
		bitbox![BigEndian, u64; 0, 1];
		bitbox![LittleEndian, u64; 0, 1];

		bitbox![1; 70];
		bitbox![BigEndian; 0; 70];
		bitbox![LittleEndian; 1; 70];
		bitbox![BigEndian, u8; 0; 70];
		bitbox![LittleEndian, u8; 1; 70];
		bitbox![BigEndian, u16; 0; 70];
		bitbox![LittleEndian, u16; 1; 70];
		bitbox![BigEndian, u32; 0; 70];
		bitbox![LittleEndian, u32; 1; 70];
		bitbox![BigEndian, u64; 0; 70];
		bitbox![LittleEndian, u64; 1; 70];
	}
}