1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
// Rust Bitcoin Library
// Written by
//   The Rust Bitcoin developers
//
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to
// the public domain worldwide. This software is distributed without
// any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication
// along with this software.
// If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
//

//! PSBT serialization.
//!
//! Defines traits used for (de)serializing PSBT values into/from raw
//! bytes from/as PSBT key-value pairs.
//!

use prelude::*;

use io;

use blockdata::script::Script;
use blockdata::witness::Witness;
use blockdata::transaction::{Transaction, TxOut};
use consensus::encode::{self, serialize, Decodable, Encodable, deserialize_partial};
use secp256k1::{self, XOnlyPublicKey};
use util::bip32::{ChildNumber, Fingerprint, KeySource};
use hashes::{hash160, ripemd160, sha256, sha256d, Hash};
use util::ecdsa::{EcdsaSig, EcdsaSigError};
use util::psbt;
use util::taproot::{TapBranchHash, TapLeafHash, ControlBlock, LeafVersion};
use schnorr;

use super::map::{TapTree, PsbtSigHashType};

use util::taproot::TaprootBuilder;
/// A trait for serializing a value as raw data for insertion into PSBT
/// key-value pairs.
pub trait Serialize {
    /// Serialize a value as raw data.
    fn serialize(&self) -> Vec<u8>;
}

/// A trait for deserializing a value from raw data in PSBT key-value pairs.
pub trait Deserialize: Sized {
    /// Deserialize a value from raw data.
    fn deserialize(bytes: &[u8]) -> Result<Self, encode::Error>;
}

impl_psbt_de_serialize!(Transaction);
impl_psbt_de_serialize!(TxOut);
impl_psbt_de_serialize!(Witness);
impl_psbt_hash_de_serialize!(ripemd160::Hash);
impl_psbt_hash_de_serialize!(sha256::Hash);
impl_psbt_hash_de_serialize!(TapLeafHash);
impl_psbt_hash_de_serialize!(TapBranchHash);
impl_psbt_hash_de_serialize!(hash160::Hash);
impl_psbt_hash_de_serialize!(sha256d::Hash);

// taproot
impl_psbt_de_serialize!(Vec<TapLeafHash>);

impl Serialize for Script {
    fn serialize(&self) -> Vec<u8> {
        self.to_bytes()
    }
}

impl Deserialize for Script {
    fn deserialize(bytes: &[u8]) -> Result<Self, encode::Error> {
        Ok(Self::from(bytes.to_vec()))
    }
}

impl Serialize for secp256k1::PublicKey {
    fn serialize(&self) -> Vec<u8> {
        self.serialize().to_vec()
    }
}

impl Deserialize for secp256k1::PublicKey {
    fn deserialize(bytes: &[u8]) -> Result<Self, encode::Error> {
        secp256k1::PublicKey::from_slice(bytes)
            .map_err(|_| encode::Error::ParseFailed("invalid public key"))
    }
}

impl Serialize for EcdsaSig {
    fn serialize(&self) -> Vec<u8> {
        self.to_vec()
    }
}

impl Deserialize for EcdsaSig {
    fn deserialize(bytes: &[u8]) -> Result<Self, encode::Error> {
        // NB: Since BIP-174 says "the signature as would be pushed to the stack from
        // a scriptSig or witness" we should ideally use a consensus deserialization and do
        // not error on a non-standard values. However,
        //
        // 1) the current implementation of from_u32_consensus(`flag`) does not preserve
        // the sighash byte `flag` mapping all unknown values to EcdsaSighashType::All or
        // EcdsaSigHashType::AllPlusAnyOneCanPay. Therefore, break the invariant
        // EcdsaSig::from_slice(&sl[..]).to_vec = sl.
        //
        // 2) This would cause to have invalid signatures because the sighash message
        // also has a field sighash_u32 (See BIP141). For example, when signing with non-standard
        // 0x05, the sighash message would have the last field as 0x05u32 while, the verification
        // would use check the signature assuming sighash_u32 as `0x01`.
        match EcdsaSig::from_slice(&bytes) {
            Ok(sig) => Ok(sig),
            Err(EcdsaSigError::EmptySignature) =>
                Err(encode::Error::ParseFailed("Empty partial signature data")),
            Err(EcdsaSigError::NonStandardSigHashType(flag)) =>
                Err(encode::Error::from(psbt::Error::NonStandardSigHashType(flag))),
            Err(EcdsaSigError::Secp256k1(..)) =>
                Err(encode::Error::ParseFailed("Invalid Ecdsa signature")),
            Err(EcdsaSigError::HexEncoding(..)) => unreachable!("Decoding from slice, not hex")
        }
    }
}

impl Serialize for KeySource {
    fn serialize(&self) -> Vec<u8> {
        let mut rv: Vec<u8> = Vec::with_capacity(key_source_len(&self));

        rv.append(&mut self.0.to_bytes().to_vec());

        for cnum in self.1.into_iter() {
            rv.append(&mut serialize(&u32::from(*cnum)))
        }

        rv
    }
}

impl Deserialize for KeySource {
    fn deserialize(bytes: &[u8]) -> Result<Self, encode::Error> {
        if bytes.len() < 4 {
            return Err(io::Error::from(io::ErrorKind::UnexpectedEof).into())
        }

        let fprint: Fingerprint = Fingerprint::from(&bytes[0..4]);
        let mut dpath: Vec<ChildNumber> = Default::default();

        let mut d = &bytes[4..];
        while !d.is_empty() {
            match u32::consensus_decode(&mut d) {
                Ok(index) => dpath.push(index.into()),
                Err(e) => return Err(e),
            }
        }

        Ok((fprint, dpath.into()))
    }
}

// partial sigs
impl Serialize for Vec<u8> {
    fn serialize(&self) -> Vec<u8> {
        self.clone()
    }
}

impl Deserialize for Vec<u8> {
    fn deserialize(bytes: &[u8]) -> Result<Self, encode::Error> {
        Ok(bytes.to_vec())
    }
}

impl Serialize for PsbtSigHashType {
    fn serialize(&self) -> Vec<u8> {
        serialize(&self.inner())
    }
}

impl Deserialize for PsbtSigHashType {
    fn deserialize(bytes: &[u8]) -> Result<Self, encode::Error> {
        let raw: u32 = encode::deserialize(bytes)?;
        Ok(PsbtSigHashType { inner: raw })
    }
}

// Taproot related ser/deser
impl Serialize for XOnlyPublicKey {
    fn serialize(&self) -> Vec<u8> {
        XOnlyPublicKey::serialize(&self).to_vec()
    }
}

impl Deserialize for XOnlyPublicKey {
    fn deserialize(bytes: &[u8]) -> Result<Self, encode::Error> {
        XOnlyPublicKey::from_slice(bytes)
            .map_err(|_| encode::Error::ParseFailed("Invalid xonly public key"))
    }
}

impl Serialize for schnorr::SchnorrSig  {
    fn serialize(&self) -> Vec<u8> {
        self.to_vec()
    }
}

impl Deserialize for schnorr::SchnorrSig {
    fn deserialize(bytes: &[u8]) -> Result<Self, encode::Error> {
        match schnorr::SchnorrSig::from_slice(&bytes) {
            Ok(sig) => Ok(sig),
            Err(schnorr::SchnorrSigError::InvalidSighashType(flag)) => {
                Err(encode::Error::from(psbt::Error::NonStandardSigHashType(flag as u32)))
            }
            Err(schnorr::SchnorrSigError::InvalidSchnorrSigSize(_)) =>
                Err(encode::Error::ParseFailed("Invalid Schnorr signature length")),
            Err(schnorr::SchnorrSigError::Secp256k1(..)) =>
                Err(encode::Error::ParseFailed("Invalid Schnorr signature")),
        }
    }
}

impl Serialize for (XOnlyPublicKey, TapLeafHash) {
    fn serialize(&self) -> Vec<u8> {
        let ser_pk = self.0.serialize();
        let mut buf = Vec::with_capacity(ser_pk.len() + self.1.as_ref().len());
        buf.extend(&ser_pk);
        buf.extend(self.1.as_ref());
        buf
    }
}

impl Deserialize for (XOnlyPublicKey, TapLeafHash) {
    fn deserialize(bytes: &[u8]) -> Result<Self, encode::Error> {
        if bytes.len() < 32 {
            return Err(io::Error::from(io::ErrorKind::UnexpectedEof).into())
        }
        let a: XOnlyPublicKey = Deserialize::deserialize(&bytes[..32])?;
        let b: TapLeafHash = Deserialize::deserialize(&bytes[32..])?;
        Ok((a, b))
    }
}

impl Serialize for ControlBlock {
    fn serialize(&self) -> Vec<u8> {
        ControlBlock::serialize(&self)
    }
}

impl Deserialize for ControlBlock {
    fn deserialize(bytes: &[u8]) -> Result<Self, encode::Error> {
        Self::from_slice(bytes)
            .map_err(|_| encode::Error::ParseFailed("Invalid control block"))
    }
}

// Versioned Script
impl Serialize for (Script, LeafVersion) {
    fn serialize(&self) -> Vec<u8> {
        let mut buf = Vec::with_capacity(self.0.len() + 1);
        buf.extend(self.0.as_bytes());
        buf.push(self.1.into_consensus());
        buf
    }
}

impl Deserialize for (Script, LeafVersion) {
    fn deserialize(bytes: &[u8]) -> Result<Self, encode::Error> {
        if bytes.is_empty() {
            return Err(io::Error::from(io::ErrorKind::UnexpectedEof).into())
        }
        // The last byte is LeafVersion.
        let script = Script::deserialize(&bytes[..bytes.len() - 1])?;
        let leaf_ver = LeafVersion::from_consensus(bytes[bytes.len() - 1])
            .map_err(|_| encode::Error::ParseFailed("invalid leaf version"))?;
        Ok((script, leaf_ver))
    }
}


impl Serialize for (Vec<TapLeafHash>, KeySource) {
    fn serialize(&self) -> Vec<u8> {
        let mut buf = Vec::with_capacity( 32 * self.0.len() + key_source_len(&self.1));
        self.0.consensus_encode(&mut buf).expect("Vecs don't error allocation");
        // TODO: Add support for writing into a writer for key-source
        buf.extend(self.1.serialize());
        buf
    }
}

impl Deserialize for (Vec<TapLeafHash>, KeySource) {
    fn deserialize(bytes: &[u8]) -> Result<Self, encode::Error> {
        let (leafhash_vec, consumed) = deserialize_partial::<Vec<TapLeafHash>>(&bytes)?;
        let key_source = KeySource::deserialize(&bytes[consumed..])?;
        Ok((leafhash_vec, key_source))
    }
}

impl Serialize for TapTree {
    fn serialize(&self) -> Vec<u8> {
        match (self.0.branch().len(), self.0.branch().last()) {
            (1, Some(Some(root))) => {
                let mut buf = Vec::new();
                for leaf_info in root.leaves.iter() {
                    // # Cast Safety:
                    //
                    // TaprootMerkleBranch can only have len atmost 128(TAPROOT_CONTROL_MAX_NODE_COUNT).
                    // safe to cast from usize to u8
                    buf.push(leaf_info.merkle_branch.as_inner().len() as u8);
                    buf.push(leaf_info.ver.into_consensus());
                    leaf_info.script.consensus_encode(&mut buf).expect("Vecs dont err");
                }
                buf
            }
        // This should be unreachable as we Taptree is already finalized
            _ => unreachable!(),
        }
    }
}

impl Deserialize for TapTree {
    fn deserialize(bytes: &[u8]) -> Result<Self, encode::Error> {
        let mut builder = TaprootBuilder::new();
        let mut bytes_iter = bytes.iter();
        while let Some(depth) = bytes_iter.next() {
            let version = bytes_iter.next().ok_or(encode::Error::ParseFailed("Invalid Taproot Builder"))?;
            let (script, consumed) = deserialize_partial::<Script>(bytes_iter.as_slice())?;
            if consumed > 0 {
                bytes_iter.nth(consumed - 1);
            }

            let leaf_version = LeafVersion::from_consensus(*version)
                .map_err(|_| encode::Error::ParseFailed("Leaf Version Error"))?;
            builder = builder.add_leaf_with_ver(usize::from(*depth), script, leaf_version)
                .map_err(|_| encode::Error::ParseFailed("Tree not in DFS order"))?;
        }
        if builder.is_complete() {
            Ok(TapTree(builder))
        } else {
            Err(encode::Error::ParseFailed("Incomplete taproot Tree"))
        }
    }
}

// Helper function to compute key source len
fn key_source_len(key_source: &KeySource) -> usize {
    4 + 4 * (key_source.1).as_ref().len()
}